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Preface

“Neurodegeneration” corresponds to any pathological condition which primarily
affects neurons. Neurological disorders not only affect the brain but also the nerves
that are found throughout the body and spinal cord. Neurodegenerative diseases
(NDDs) are defined as disorders that affect the central nervous system causing
progressive dysfunction of the nervous system. These incurable and exhausting
conditions are characterized by loss of neuronal cell function and are often associ-
ated with the deterioration of structures of the affected nervous system. Diagnosis of
neurological diseases is a growing concern and one of the most difficult challenges
for modern medicine. According to the World Health Organization’s recent report,
neurological disorders, such as epilepsy, Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease (HD), stroke, and headache, to name a few, affect up to one
billion people worldwide. An estimated 6.8 million people die every year as a result
of neurological disorders.

The book primarily focuses on the study of different neurological disorders like
epilepsy, Alzheimer’s, Parkinson’s, HD, and motor neuron diseases (MNDs) from a
new perspective by analyzing the physiological signals such as EEG, EMG, ECG,
and gait rhythm associated with these diseases using nonlinear dynamics.

Physiological signals such as heart rate, blood pressure, respiration, and stride
intervals fluctuate continuously over time reflecting the complex regulation of these
signals by the central nervous system. Analyzing the dynamics of these human
physiological signals is an important area of research to help control and to be
able to predict the onset of pathological conditions. Since long, several researchers
have used different techniques, mostly linear, for studying various diseases, but, of
late, research on nerve-related diseases or disorders has gained much importance as
the world suffers a lot of deaths due to these progressive neuron diseases which are a
slow and silent killer due to the lack of proper knowledge and appropriate medica-
tion. Since we have been working on various neurological disorders for more than
10 years, we decided to summarize our works and also the works of other researchers
in this field in the form of a book.
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Like every other system found in nature, physiological signals are also of
complex character, as they are composed of many subsystems which are strongly
correlated to each other, but not in a linear fashion. Conventional linear techniques
like amplitude, root mean square, or Fourier analysis cannot provide detailed
information about these subsystems. The development of nonlinear methods has
significantly helped in studying complex nonlinear systems in detail by providing
accurate and precise information about them. Nonlinear time series analysis methods
enable the determination of characteristic quantities of a particular system solely by
analyzing the time course of one of its variables. Thus, from this viewpoint,
nonlinear time series analysis methods are superior to mathematical modeling,
since they enable the introduction of basic concepts directly from the experimental
data. Since works of several researchers have established the complex nonlinear
character of physiological signals like EEG, ECG, EMG, and human gait rhythm, we
have been motivated to use nonlinear techniques in our work.

In a nutshell, the book provides a comprehensive study on most of the neurolog-
ical disorders with special emphasis on the methods used which are not only new but
also rigorous and robust. The findings provide simple parameters for the diagnosis
and prognosis of different neurodegenerative disorders, and adequate software can
be developed which can easily be coupled with machines. The overall premise of the
book for analyzing bioelectrical signals using nonlinear techniques is easily achiev-
able and need of the day. The book will be easily accessible and useful to a very large
community working in biomedical sciences and engineering.

We hope that this compilation of the original research work on the analysis of
brain through fractal analysis will definitely provide a platform and a direction for
inquisitive students and researchers of biomedical engineering and neuroscientists to
think objectively on the premises. We also feel that this work will stimulate more
exhaustive research on different other neurological disorders which are not com-
monly studied.

We are really happy that the leading publisher Springer Nature has accepted to
publish the book. We sincerely thank the editors and all the other staffs of Springer
Nature for their continual help, support, and suggestions.

Kolkata, West Bengal, India Dipak Ghosh
Howrah, West Bengal, India Shukla Samanta
Agartala, Tripura, India Sayantan Chakraborty
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Chapter 1
Introduction

Abstract Disease of the central nervous system has been described in the literature
as a group of neurological disorders for which the function of the brain or spinal cord
is affected. This chapter outlines the general description of the diseases like epilepsy,
Parkinson’s, Huntington’s, Alzheimer’s, and motor neuron diseases. Also a discus-
sion on the diagnostic tools and the methodologies adapted is reviewed in detail.

1.1 Central Nervous System and Its Diseases

The nervous system controls all activities of human beings. The nervous system
consists of the brain and the spinal cord, as well as all the nerves throughout the
body. Compared to other living organisms, humans are considered to be superior as
the anatomy and physiology of the nervous system of humans are unique. The brain
and spinal cord form the central nervous system (CNS), and all other nerves
throughout the body are referred to as the peripheral nervous system (PNS). As
the central nervous system (CNS) can determine the consciousness of us humans, it
has been attributed to be the most complex organ in the human body. All aspects of
our behavior from breathing to supporting our thoughts and feelings (Kandel and
Squire 2000) are controlled by the nervous system. The human brain is the most
sophisticated organ in the human body. The brain regulates vital body functions such
as emotion, memory, cognition, motor activities, heart rate, respiration, and diges-
tion. The human brain is a complex network of millions of neurons packed in a
matrix of glial cells (Benson et al. 2017).

Diseases of the brain may be caused either due to inherent dysfunction of the
brain or due to complex interactions of the brain with the environment (Hyman et al.
2006). Brain diseases range widely from common neurological to psychiatric disor-
ders. Throughout the life span, brain diseases affect a very significant portion of the
population and are widely spread both across the developed and developing nations.
Compared to other diseases, brain diseases account for the highest burden in terms of
health, economy, and social capital globally (Nathan et al. 2001). More than 1.5
billion people are affected due to brain disorders worldwide, and with the passage of
time, it is feared that this population will increase. Thus there is an urgent need of not
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only producing more drugs to treat CNS disorders but rigorous research so that early
prognosis and diagnosis can be made and is the need of the day to help control this
epidemic.

Across the life span of human, the nature of the brain disorders changes. In young
there is a high prevalence of psychiatric disorders, like depression, anxiety, schizo-
phrenia, and substance abuse, whereas the elderly suffer markedly from neurode-
generative disorders such as dementia or stroke (Wittchen et al. 2011). More widely
appreciated are the neurodegenerative disorders, namely, Parkinson’s (PD) and
Alzheimer’s disease (AD), which are on the rise due to an older population (von
Campenhausen et al. 2005). Huntington’s disease (HD) and amyotrophic lateral
sclerosis (ALS) are other neurodegenerative diseases. The neurodegenerative dis-
eases are characterized by inevitable gradual decline in cognitive ability and also the
potential to self-sustain (Prince et al. 2013). The neurodegeneration produces a
clinical syndrome called dementia, whose symptoms include inability to recollect,
sudden and unexpected changes in one’s mood, and problems to communicate and
reason (Devous 2002).

Next to stroke, epilepsy is the second most common neurological disorder
affecting approximately 50 million people worldwide. “Epilepsy” is derived from
the Greek term epilambanein which means to seize, and it denotes the predisposition
to have recurrent, unprovoked seizures (Quintero-Rincon et al. 2016). In epilepsy,
the nerve cells of the brain transmit exorbitant electrical impulses that cause seizures.
An epileptic seizure is defined as “a transient symptom of excessive or synchronous
neuronal activity in the brain” (Fisher et al. 2005). Epilepsy is defined by two or
more such unprovoked seizures. Seizures may be either focal or generalized. In focal
seizures, only a specific segment of the brain is affected, while in generalized
seizures the whole brain is affected (Acharya et al. 2012a). Epileptic seizures may
lead to impairment or unconsciousness and psychic, autonomic, sensory, or motor
problems (Lehnertz 2008).

Electroencephalography (EEG) is an important clinical tool for monitoring and
diagnosing neurological changes in epilepsy. Compared with other methods such as
magnetoencephalography (MEG) and functional magnetic resonance imaging
(fMRI), EEG is an affordable and safe technique for inspecting brain activity.
Drugs and surgical treatment options are not sufficient to treat epilepsy. Among
new therapies developed, implantable devices that deliver direct electrical stimula-
tion to affected areas of the brain have shown promising results. The effectiveness of
these treatments depends mainly on robust algorithms for seizure detection. As
seizure onset cannot be predicted, a continuous recording of the EEG is essential
to ascertain epilepsy. But since visual assessment of long EEG recordings is tedious
and time-consuming (Song 2011), automated detection methods of epilepsy have
gained importance. With a view to study the changes that occur in the brain in
seizure and seizure-free status, we analyzed EEG signals using a latest state-of-the-
art methodology. The observations made are very interesting and are described in
Chap. 2.

Alzheimer’s disease another disease of the central nervous system is the major
reason of dementia. This disease is described by an intensifying reduction in brain
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function, which generally commences with deterioration in memory (Devous 2002).
Alzheimer’s disease progression can be grouped into four stages. The “preclinical”
stage is mild cognitive impairment (MCI) where patients show mild memory
impairment, but their other cognitive abilities and functional activities are retained
(Petersen et al. 2009; Weiner et al. 2012). In the next stage, reduction of indepen-
dence is caused due to increasing cognitive insufficiency. Mild AD and moderate
AD are the second and third stage of Alzheimer’s disease. In severe AD, the last
stage, not only are all cognitive functions acutely damaged, but also chewing and
swallowing become extremely difficult (Bianchetti and Trabucch 2001). Early
diagnosis of AD in MCI and mild AD stages is important so that with proper medical
intervention, severity of the disease can be checked.

Neuroimaging techniques, physiological markers, and genetic analyses are the
methods used for the detection of Alzheimer’s disease. Popular neuroimaging
techniques used successfully in AD detection at an early stage include single-photon
emission computerized tomography (SPECT), positron emission tomography (PET),
and magnetic resonance imaging (MRI) (Elgandelwar and Bairagi 2016). But the
problems with these methods are that they are not only expensive, time-consuming,
and inconvenient but also possess risks due to radiation. In order to understand the
macroscopic spatial temporal dynamics of the electromagnetic fields of the brain,
EEG and MEG have evolved as significant neurophysiologic methods (Stam 2005).
In particular, EEG provides different time series leads revealing the working of the
brain corresponding to different cognitive states involved in processing the infor-
mation (Ronghua et al. 2001). The brain being a non-linear system, its behavior
cannot be merely decomposed into single neuron behavior (Aike and Huiming
1994). The studies conducted to understand the brain dynamics in Alzheimer’s
disease patient have been outlined in Chap. 2 where mainly the use of EEG signals
has been highlighted.

Some studies have recorded that by analyzing the activities of the autonomic
nervous system (ANS), epileptic seizures can be detected. Heart rate variability
(HRV) analyses can provide information of the underlying activities of the ANS.
Time interval measurement between subsequent QRS complexes reflects heart rate
variability which indicates the governance of the heart rate by the ANS by means of
its sympathetic and parasympathetic control mechanisms (Ponnusamy et al. 2012).
Thus indirect evidence of nervous system activity can be demonstrated by HRV
analyses (Pavei et al. 2017). Electrocardiographic (ECG) signals have been used by
some authors (Malarvili and Mesbah 2009; Varon et al. 2014; Fujiwara et al. 2016)
for detecting and predicting seizures. Few studies have also focused on the study of
HRV parameters in subjects before seizure and in between seizures (Ponnusamy
et al. 2011, 2012; Behbahani et al. 2013; Pavei et al. 2014). But much work has not
been done to assess autonomic nervous system (ANS) activity post seizure. A study
on post-seizure heart rate oscillation is outlined in Chap. 3.

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease. Problem to speak,
swallow, breathe, and contract and relax muscles, stiffening of muscles, progressive
weakness, etc. are some typical features associated with this disease. Damage of
motor neurons in any portion of the body is affected by amyotrophic lateral sclerosis
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disease. Since the sensory nerves and involuntary nervous system are not affected in
most of the patients, the sensations of touch, hearing, smell, sight, and taste (Singh
et al. 2013) are intact. Several investigators have studied the stride interval to detect
ALS (Yunfeng and Sin 2010; Sugavaneswaran et al. 2012). Hausdorff et al. (1985)
compared the gait rhythm of patients suffering from ALS with healthy subjects and
subjects suffering from Parkinson’s disease (PD) and Huntington’s disease (HD). In
Chap. 4, we have described motor neuron disease (MND) which is also a neurolog-
ical disorder of the motor system in adults. Since motor neurons are the nerve cells
that are responsible for movement of the muscles, thus they are considered to be the
most significant part of the neuromuscular system. As MND disease damages motor
neurons in the brain and spinal cord, the muscles gradually become weaker, and after
a certain period, it stops working. Electromyography (EMG) is the most important
diagnostic tool of MND. In Chap. 4 using a multifractal approach, we have briefed
the analysis of EMG signals of people suffering from myopathy and neuropathy.

Parkinson’s disease (PD) is an incurable and advancing hypokinetic disorder of
the central nervous system (Jankovic 2008). In 1817 James Parkinson named it “the
shaking palsy.” Though people over 50 years are seen to be affected by the disease
where symptoms evolve gradually over time, some rare form of the disease where
progression rate is faster affects the younger ones. Parkinson’s disease is not only
chronic and progressive, since it prevails over a longer time period, but the symp-
toms become worse as time progresses (Singh et al. 2013). It is caused by basal
ganglia dysfunction. Basal ganglia, which emanate from the cerebral cortex and the
brain stem, produce motor impulse and send sensory information through the
projecting loops in the central nervous system (Sian et al. 1999). Functioning of
the motor system is affected by basal ganglia dysfunction which leads to impaired
balance and altered gait rhythm (Marsden 1982). Thus study of gait rhythm is of
immense importance in understanding Parkinson’s disease. A detailed study of gait
dynamics using non-linear approach is presented in Chap. 5.

Huntington’s disease (HD) is an autosomal-dominant neurodegenerative disease
of the central nervous system. The disease derived its name from George Hunting-
ton. It was first described by him in 1872 hence the name (Hausdorff et al. 1997).
Chorea and cognitive and personality changes are the initial clinical features.
Pathological changes are mostly seen in the basal ganglia, with a loss of neural
projection in the striatum (caudate nucleus and putamen) (Penney and Young 1993).
People in the age group of 30 and 40 who have generally not been affected by
concomitant disease and age-related physiological changes are commonly affected
by Huntington’s disease. Essentially Huntington’s disease is a manifestation of some
nonfunctioning of central nervous systems. It provides a suitable contrast to aging,
useful in studying dynamics behind stride-interval correlation with nonfunctioning
of the brain. The capability of the locomotor system to generate correlations in the
stride interval was shown to be decreased in elderly subjects and in subjects with HD
by Hausdorff et al. (1997). To test this theory, we have studied the fluctuations of
gait dynamics of HD and PD and compared them with healthy controls. The results
of the study are contained in Chap. 5.
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Alterations in heart rate and blood pressure due to change in body posture are an
important area of research to understand orthostatic stress. However no detailed
study has been done and reported in existing literature. Multifractal cross-correlation
study between the two physiological signals, namely, ECG and arterial blood
pressure (ABP) described in Chap. 6, highlights the responses in the cardiovascular
system due to changes in posture.

1.2 Bioelectrical Signals

Due to the complex nature of the nervous system, neurological disorders are the most
challenging to diagnose, manage, and monitor. Diagnosis and treatment require high
precision, dedication, and experience. Different disorders of the nervous system
include epilepsy, dementias, Alzheimer’s disease, cerebrovascular diseases includ-
ing stroke, multiple sclerosis, Parkinson’s disease, migraine, neuroinfections, brain
tumors, and traumatic disorders of the nervous system to name a few. Structural,
biochemical, or electrical abnormalities in the brain, spinal cord, or other nerves give
rise to a wide variety of symptoms, thus developing various disorders. Population
worldwide regardless of their sex or age is afflicted by these disorders, thus facing
devastation and deprivation. So a timely and speedy diagnosis of these disorders is
necessary to prevent and significantly improve the quality of life by acquiring
suitable technologies. Wide variety of modern diagnosis methodologies are adapted
to help ascertain, control, and treat neurological disorders, such as brain wave tests
(electroencephalography or EEG), computerized tomography (CT scan), magnetic
resonance imaging (MRI scan), electromyography (EMG), arteriogram (also called
an angiogram), and positron emission tomography (PET scan or PET imagery). With
these important tools, the physicians can affirm or adjudicate the existence of a
neurological disorder or other medical conditions. These diagnosis techniques pro-
duce huge quantity of data which is analyzed manually hence time-consuming to
detect and is also prone to error and fatigue. It is a difficult task to assemble,
supervise, and understand such huge data inspecting visually so computerized
diagnosis techniques have been developed which can reliably detect the neurological
abnormalities from these large medical data easily. Thus computer-aided diagnosis
techniques would improve consistency of diagnosis and escalate the outcome of
treatment, saving lives and reducing cost and time as well (Siuly and Zhang 2016).
This book addresses the problem of handling big medical data using non-linear
approach to quantify different disorders associated with the central nervous system.
In this section we have focused on mainly the bioelectrical signals such as electro-
encephalography, electrocardiography, and electromyography (EMG). Later analy-
sis of these signals in order to understand the disorders related to the brain, the
cardiovascular system, and the motor dysfunction is detailed.
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1.2.1 Electroencephalography

Electroencephalography is defined as the technique of recording electrical activity
due to ionic current flows generated by neurons in the brain (Libenson 2009). EEG
provides very useful information on the exploration of brain activity, diagnosis of
cerebral disease, and identification of brain disorders (Sheng and Chen 2011). In
1875 Richard Canton was the first to identify electrical currents in our brain. Hans
Berger a German neuropsychiatrist first recorded these currents and called it elec-
troencephalogram (Berger 1929). Since the first EEG potentials were discovered, it
has found its potential use in many clinical settings such as the diagnosis of
schizophrenia (Schellenberg and Schwarz 1993) and in brain dynamics research in
different physiological states of the patients.

Complexity, non-linearity, nonstationarity, and random nature of the EEG signals
are a result of complex interconnections between billions of neurons. The signal
consists of a number of sinusoidal components of distinct frequencies communicat-
ing non-linearly to produce one or more sinusoidal components at sum or difference
frequencies (Zhuo et al. 2008). The non-linear character of EEG signals may unveil
the hidden complexities present in the time series. In a primeval study by Babloyantz
et al. (1985), non-linear parameters like correlation dimension (CD) and largest
Lyapunov exponents (LLE) were used to study the sleep wave signal. Because of
such studies, the probable application areas of EEG non-linear analysis methodol-
ogies have diversified. Among other applications of non-linear methods, detection of
epilepsy is the most common area of application (Mormann et al. 2003, 2005;
Lehnertz 2008). Detection of epilepsy from EEG signals using non-linear methods
has been the focus of numerous investigations thus quantifying non-linear mecha-
nisms thereby providing a better reflection of the EEG characteristics (Acharya et al.
2012a). EEG signals are also helpful in detecting other neurological disorders like
Alzheimer’s, Parkinson’s, Huntington’s, autistic spectrum disorder (ASD), brain
tumor, etc.

1.2.2 Electrocardiography

An electrocardiogram (ECG) is a bioelectrical signal that records the heart’s electri-
cal activity against time. For assessing the heart functions and its disorders, ECG is
the most important diagnostic tool. While recording ECG the electrical impulses
while the heart is beating are recorded. The record manifests if there is any problem
with the rhythm of the heart (Vanage et al. 2012).

A typical ECG signal is shown in Fig. 1.1. The time between two successive beats
is known as RR interval. The natural pattern of the human heart is known to differ
with sympathetic and parasympathetic signals. Normally, sympathetic activity is
known to decrease the RR intervals and its variability, while parasympathetic
activity is known to increase the RR intervals and its variability (Berntson et al.
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1997). Heart rate variability (HRV) is a measure of the beat-to-beat variability
(RR intervals) which indicates the health of the cardiovascular system. It is generally
used to determine the coordination of cardiac autonomic function (Flynn et al. 2005;
Vinik et al. 2013). A variety of linear, non-linear, periodical, and nonperiodical
oscillation patterns are present in heart rate fluctuations (Aubert et al. 2002).

Among the four chambers of the heart, the upper two chambers are called the
atria, and the lower two chambers are called the ventricles (Al-Qazzaz et al. 2014a).
To identify ECG features, the letters PQRST are normally used. Activation of the
atria is expressed by the P wave which is the first wave of the cardiac cycle.
Conduction of the cardiac impulse proceeds from the atria through a series of
specialized cardiac cells (the AV node and the His-Purkinje system). Following
the P wave, there is a relatively short isoelectric system. A quick and huge deflection
is observed on the surface of the body when large muscle mass of the ventricles is
excited which causes contraction of the ventricles yielding the required force
necessary to circulate blood to various organs of the body. This large wave has
many components where the first downward deflection is known as the Q wave, the
upward deflection the R wave, and the terminal downward deflection the S wave.
Based on the location of the leads on the body and any existent abnormalities, these
three waves are present. The large ventricular waveform is called the QRS complex
which is succeeded by another relatively short isoelectric segment. After this short

Fig. 1.1 A schematic diagram of ECG. (Source: https://en.wikipedia.org/wiki/QRS_complex)
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segment, the ventricles return to their electrical resting state, and a wave of repolar-
ization is seen as a low-frequency signal known as the T wave (Bronzino 2000).

HRV measurements exhibit non-linear and nonstationary character, and the
dynamics of their fluctuation with varying time periods contains significant infor-
mation (Ivanov et al. 1999, 2001, 2004). With the use of conventional (linear)
mathematical methods for analyzing fluctuations in heart rate variability, important
information gets lost. So development and implementation of new non-linear math-
ematical methods based on the fractal theory will govern the cause of HRV fluctu-
ations. HRV signals possessing properties of fractal geometry like self-similarity,
scalability, fractal dimension, and long-range dependency are accounted for the basis
of development of non-linear methods (Stanley et al. 1999; Rhaman et al. 2013).
Application of non-linear methods is of extreme importance because the results will
present intricate report of physiological status of the patients. Another potentiality of
these non-linear methods is acquaintance of new knowledge concerning the diag-
nostics, prognosis, and prevention of pathology of cardiovascular disease
(Gospodinova 2014).

1.2.3 Electromyography

The electromyography (EMG) signal is a bioelectrical signal which records electrical
currents generated in muscles during its contraction portraying neuromuscular
activities. Contraction or relaxation of muscles is governed by the nervous system.
Hence, EMG is a complex signal, which is controlled by the nervous system and is
dependent on the anatomical and physiological features of muscles (Reaz et al.
2006). EMG is of two types, namely, intramuscular electromyography (IEMG)
and surface electromyography (SEMG) (Farina and Negro 2012). Intramuscular
electromyography (Monsifrot et al. 2004) is an invasive technique which is done
by inserting needle electrodes through the skin into the muscle tissue and the
electrical signal is read by a trained professional, whereas electrical activity record-
ing of muscles by placing electrodes on skin surface is known as SEMG (Merletti
and Farina 2008; Soo et al. 2009; Hug 2011). The surface EMG signals have found
considerable use in determination of motor function and movement disorders in
humans, thus presenting significant information on neuromuscular strategies (Farina
et al. 2004). Analysis of muscle fatigue has been done using SEMG signals
(Venugopal et al. 2014). These signals are aggregate of electrical activity of the
muscles and crop up as fluctuations that are vastly nonstationary and non-linear and
exhibiting fractal characteristics (Talebinejad et al. 2009; Zhang et al. 2010; Meigal
et al. 2013). EMG signals can detect abnormal electrical muscle activity in
amyotrophic lateral sclerosis (ALS or Lou Gehrig’s disease), carpal tunnel syn-
drome, muscular dystrophy, sciatic nerve dysfunction, inflammation of muscles, etc.

Apart from those mentioned above (EEG, ECG, and EMG), there are other
recently developed advanced diagnosis technologies that can detect, manage, and
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treat neurological disorders such as computerized tomography (CT scan), magnetic
resonance imaging, arteriogram (also called an angiogram), and positron emission
tomography (PET scan or PET imagery). EEG, ECG, and EMG tools are more
preferred than CT, MRI, angiogram, and PET as they are easy to detect and
affordable. Where the world still suffers from hunger and poverty at large, affordable
and cost-effective medical tools still serve as the primary diagnostic tools to the
population worldwide. The different bioelectrical signals discussed so far have
potential use in determining various physiological and pathological disorders of
the nervous system, cardiovascular system, and neuromuscular system as well. Our
book primarily focuses on the extraction of valuable information from these signals
using non-linear signal analysis techniques.

1.3 Linear Signal Processing Techniques

Signal processing is the process of modeling, detection, and identification of patterns
and structures in a signal. A signal describes the information through variation of
quantity which reflects the properties, the characteristics, the state, the course of
action, and the information about a source, and that information may be processed
directly by humans or machines for the purpose of decision, forecasting, control,
investigation, research, and further exploration of an object (Vaseghi 1996).

Physiological systems belong to a class of very complex systems. Compared to
complicated systems which can be split into pieces, examined fragment wise, and
reorganized back together, the complex ones are not merely sum of their parts (Jovic
and Bogunovic 2010). They are non-linear to a degree and can never be inferred
completely (Goldberger 1996). The prime method to explain complex systems is to
represent them with a complicated model. Determination of physiological functions
of a specific biological system is based on diverse clinical tests and measurements.
The brain, heart, lungs, and nervous and muscular systems are the vital physiological
systems in human body. Electrical currents transmitted from biological systems are
due to the electrolytic activity in tissue cells which are determined by placing
electrodes either on the skin or injecting them deep into the tissue (Jovic and
Bogunovic 2010). Acquisition of vital information from biological and physiolog-
ical systems is the key to biomedical signal processing. Since these signals help us to
extract information about the current state of health of humans, their monitoring and
interpretation have significant diagnostic value for clinicians as well as for
researchers to understand human health and diseases.

Signal processing techniques can be classified into linear and non-linear methods.
A signal is said to be linear when output is always proportional to input, whereas it is
non-linear if output and input are not proportional.

Linear signal processing techniques include mainly the root mean square (RMS)
method, short-time Fourier transform (STFT), fast Fourier transform (FFT), wavelet
transform (WT), and discrete wavelet transform (DWT).
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1.3.1 Root Mean Square (RMS) Method

RMS is the most familiar and also the easiest method for classifying signals. Root
mean square values designate the variations of normal signal. For simple events, this
method gives satisfactory results, but for complex system involving nonstationarity
and non-linearity, this method is not suitable. Its disadvantage is its reliance on the
lower signal size and its deficiency to discriminate between fundamental frequency
and harmonics.

1.3.2 Fast Fourier Transform (FFT) Method

Fourier transform is a method that converts a time domain signal into its
corresponding frequency components. This method is productive for periodical
signals to obtain its magnitudes and phases. The discrete Fourier transform (DFT)
is an advanced technique of Fourier transform analysis, and FFT is regarded as a
faster version of DFT, where sampling is done in a windowed manner. For analyzing
the nonstationary and non-linear signals, FFT is considered as a suitable method.
Since FFT can decrease the overall calculation time, an effective mitigation algo-
rithm can be chosen (Augustine et al. 2016).

FFT is not efficient in the analysis of nonstationary and non-linear signals. The
introduction of FFT can reduce the overall computation time and thereby able to
choose an efficient mitigation algorithm (Augustine et al. 2016).

Several automated EEG detecting methods have been developed, based on
Fourier spectral analysis assuming EEG signals are stationary permitting signal
transformation from time to the frequency domain. These methods permit
researchers to gather information solely in the frequency domain (Polat and Gune
2007). Polat and Gune (2007) employed Fourier spectral analysis for EEG signal
extraction.

1.3.3 Short-Time Fourier Transform (STFT) Method

Sliding window record of FFT is the short-time Fourier transform which shows good
results in the frequency domain compared to other classification methods. For time-
varying and non-linear signals, it presents inappropriate outcomes. To reduce com-
plexity in calculation, it can divide long nonstationary signals into short segments
(Augustine et al. 2016). The major difficulty with Fourier analysis in the obtained
signals is its total spectrum, and it cannot be used for local analysis. Short-time
Fourier transform (STFT) was used to calculate the spectrum density of EEG signals
(Tzallas et al. 2009; Li et al. 2016).
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1.3.4 Wavelet Transform (WT) Method

Wavelet transform method is used to analyze signals in varied sub-bands in a careful
manner. Since wavelet transform analyzes windows of varying sizes, it is a more
pliable way of time–frequency representation of a signal compared to Fourier
transform. A significant feature of wavelet transform is that, at high frequencies, it
presents specific time information and at low frequencies it presents precise fre-
quency information. This feature of WT is of paramount importance as biomedical
signals normally include low-frequency information with long time duration and
high-frequency information with short time duration. Wavelet transform can pre-
cisely measure the transient characteristics and is confined in both time and fre-
quency domains. But the main problem with wavelet transform-based methods is the
choice of mother wavelets (Song 2011).

1.3.5 Discrete Wavelet Transform (DWT) Method

The discrete wavelet transform (DWT) (Mallat 2002; Addison 2002) is an appro-
priate technique to represent and employ signals having distinct transients. It divides
the signal into its low-resolution parts and a series of details at varied resolutions.
Denoising is the most probable application of the DWT. It has drawn ample attention
for removing noise in biomedical signals (Quiroga and Garcia 2003; Poornachandra
2008; Phinyomark et al. 2009; Li et al. 2009; Gao et al. 2010).

Discrete wavelet transform (DWT) was used by some researchers to extract
features from EEG signals (Ocak 2009; Li et al. 2011). Faust et al. (2015) used the
DWT-based EEG denoising method and the feature extraction for the seizure
detection and epilepsy diagnosis. The study presented the wavelet technique to be
an efficient method for automatic epilepsy diagnosis using EEG signals. Hassan
et al. (2016) proposed the tunable factor wavelet transform for automated epilepsy
diagnosis. All these traditional approaches are not sufficient alone to provide an
efficient way to characterize the complexity of EEG signals without taking into
account the non-linearity of the signals.

1.4 Limitations of Linear Analysis Techniques

Linear analysis of physiological signals includes frequency analysis (e.g., Fourier
and wavelet transforms) and parametric modeling (e.g., autoregressive models).
Though linear methods have been successfully applied in several problems (Ander-
son et al. 1998; Garrett et al. 2003; Faust et al. 2010), they provide a limited amount
of information as they ignore the underlying non-linearity in the signal. To describe
the state of a system, linear analyses mainly emphasize on central tendencies, while

1.4 Limitations of Linear Analysis Techniques 11



non-linear analyses tender some understandings in the organization of the variability
of state of a system by evaluating the persistence of certain patterns or “shift” in the
regularity of the time series (Darbin et al. 2013). Conventional linear techniques
cannot provide detailed information about the subsystems. The development of
non-linear methods has significantly helped in understanding complex non-linear
systems in detail by providing accurate and precise information.

Simple non-linear systems were found to present highly complex (Grassberger
and Procaccia 1983; Parker and Chua 1989; Buczkowski et al. 1998; Kim et al.
1999; Eke et al. 2002; Sarkar and Leong 2003) and chaotic behavior as they are
intensely sensitive to initial conditions, since any perturbation, no matter how
minute, will forever alter the future of the systems (Ghosh et al. 2017). Eke et al.
(2002) proposed that the presence of self-similarity is a typical feature of complex
signals as the smaller-scale structure bears resemblance to the larger-scale structure
in complex bioelectrical signals such as EEG, ECG, EMG, etc. Fractals exhibit this
self-similar property (Mandelbrot 1977). Thus simple linear techniques cannot
provide minute detail information about complex dynamical systems. Thus, the
necessity of developing non-linear analysis techniques came into force.

1.5 Non-linear Techniques

Describing natural process using non-linear dynamics is a more realistic approach as
in non-linear systems, input is not directly proportional to output, and they can be
described by a wide variety of behavior that corresponds to the complexity seen in
nature. Non-linear systems may be viewed as immensely stable possessing limit-
cycle behavior or unstable subject to the precise nature of the non-linearity.

Extreme and persistent sensitivity to perturbation may lead to instability and
under certain conditions may give rise to complex and apparently unstable behavior,
an incident commonly called “chaos.” As a result of the underlying dynamics,
physiological systems may show random fluctuations. Important information about
the dynamical state of the system may be present in these fluctuations which are not
possible from traditional observations (Bishop et al. 2012). Recent developments of
mathematical tools and computerized methodologies have made it possible to
explore these inherently difficult systems. The application of sophisticated
non-linear analysis techniques has revealed the undisclosed facts of a variety of
time series data of natural processes (Ivanov et al. 1999; Goldberger et al. 2002;
Krishna et al. 2003; Enescu et al. 2004; Oswiecimka et al. 2005; Wink et al. 2008;
Millan et al. 2010).

Several non-linear analysis techniques have developed with the advent of time.
Phase space reconstruction, recurrence quantification analysis, entropy analysis, and
fractal and multifractal analysis are a few. In this book we have mainly focused on
the use of fractal- and multifractal-based methods to explore disorders of the central
nervous system.
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Phase Space Reconstruction Method: Phase space reconstruction is a standard
method for studying chaotic systems. It shows the trajectory of the system in time. A
set to which a dynamic system evolves after a long enough time is called attractor. A
space in which each point outlines two or more than two states of a variable of a
system is known as phase space or phase diagram. Phase space dimension or
reconstruction dimension is defined as the number of states present in phase space
(Bogunovic and Jovic 2010).

Recurrence Quantification Analysis (RQA): A technique independent of data
size, stationarity, and statistical distribution and which can detect and analyze state
changes in drifting dynamic systems is referred to as the recurrence quantification
analysis (Webber and Zbilut 1984). It is a technique which demands precise com-
petence. Its proper implementation in physiology can measure its potentiality. It has
the capability to look at the inner structure of the examined signal (Conte et al. 2015).

Entropy Analysis: To study the regularity of a time series, Pincus (1991, 1995)
proposed approximate entropy (ApEn). A lower value of ApEn corresponds to a
regular and predictable time series, whereas a higher value of ApEn represents a
random time series. For evaluating average logarithmic probability, it takes a
template-wise approach. The method has found profound use in studying the
cardiovascular system. Due to its dependence on length of the record and consis-
tency, it has major drawbacks (Richman and Moorman 2000; Lake et al. 2002).
Sample entropy (SampEn, r, N) is the negative natural logarithm of the conditional
probability that a data set of length N, having repeated itself within a tolerance r for
m points, will also repeat itself for m + 1 points, not permitting self-matches
(Richman and Moorman 2000). Compared to ApEn, SampEn evaluates negative
logarithm of probability of the total time series (Humeau et al. 2008). The main
advantage of SampEn over ApEn is that it does not depend on length of the record
and also shows relative consistency (Richman and Moorman 2000; Lake et al. 2002;
Al–Angari and Sahakian 2007).

To study the non-linear systems, fractal-based methods have gained much impor-
tance in comparison to other methods and have been successfully applied to a variety
of systems.

1.5.1 Fractals and Multifractals

A fractal is a geometric arrangement made from a vast set of increasingly small
subunits. Each small unit is an imitation of the whole, which is self-similar across
length scales, i.e., over different levels of magnification (Bassingthwaighte et al.
1994). In snowflakes, clouds, mountain ranges, vegetables, coastlines, etc., self-
similarity is generally noticed (Mandelbrot 1967). So this phenomenon of self-
similarity is found all over nature. Self-affine fractals are those when scale of
variation in one direction is different from that in another direction (Mandelbrot
1985). The concept of fractals was first introduced by the Polish mathematician
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Benoit Mandelbrot. He derived the term from the Latin adjective fractus which
means broken.

Fractal analysis provides a mathematical formalism to characterize intricate
spatial and dynamical structures (Feder 1988). As fractals have fractional dimension,
it can help in explaining extremely irregular objects which Euclidean geometry
cannot. Fractal scaling behaviors can identify variation of time series patterns with
alteration of temporal scales (Ge and Leung 2013). Long-range correlation is
another striking feature of fractals which means fluctuation in the time series is
related to the previous fluctuation. The change of correlations is based on power law
(Namazi and Kulish 2015). Fractal methodology has found wide use in biology and
medicine for studying DNA (Namazi et al. 2015), eye movement (Namazi et al.
2016a), EEG signal (Namazi et al. 2016b), bone structure (Huh et al. 2011), etc.

Fractals are of three types: one that occurs in nature, geometrical fractals those
which are artificially generated, and complex fractals. In nature fractals exist every-
where. The vegetables that we eat are also examples of fractals. Below are some
examples of fractals that are found in nature:

• A fern consists of branches which look similar to little ferns (Fig. 1.2); those
branches in turn are made of smaller but structurally alike elements. The self-
similar character of fractals also does not vary with scale, since they even appear
mathematically similar at all scales of observation. At all scales of examination,
rocks seem to be the same. An observer looking at a picture cannot define its scale
till a figure of known size is in the picture (Brown and Witschey 2003).

• The next example is a very common vegetable the Romanesco broccoli which
shows self-similar form approximating a natural fractal (Fig. 1.3).

• Another image of fractal found in nature is the quartz stone. It has triangular
points which look similar if one zooms in on any part of the stone (Fig. 1.4).

• Neurons the basic building blocks of the central nervous system are an example of
fractal found in the brain (Fig. 1.5).

Fig. 1.2 A fractal fern: it
repeats its pattern at various
scales. (Source: https://
commons.wikimedia.org/
wiki/File:Sa-fern.jpg)
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Fig. 1.3 Romanesco
broccoli: showing self-
similar form approximating
a natural fractal. (Source:
https://en.wikipedia.org/
wiki/File:Fractal_Broccoli.
jpg)

Fig. 1.4 A quartz stone.
(https://en.wikipedia.org/
wiki/File:Unknown_
Quartz_crystal_66.JPG)

Fig. 1.5 Neurons in
cerebral cortex. (Source:
https://commons.wikimedia.
org/wiki/File:Smi32neuron.
jpg#file)
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Geometric Fractals: These fractals are artificially generated structures obtained by
a simple production rule. Some of the geometrically constructed fractals are Cantor
set, Sierpinski triangle, Von Koch flake, etc.

(a) Cantor Set: To obtain a Cantor set, a line is first divided by 3; then its middle
third part is removed. The procedure is repeated for each of the remaining parts.
Continuing this way in each step, the same structure is obtained but to a smaller
size (Fig. 1.6).

(b) Sierpinski Triangle: Polish mathematician Waclaw Sierpinski in 1916 described
the Sierpinski triangle. In the process of connecting the middle points of each
side of an equilateral triangle to produce four separate triangles and then
removing the triangle in the center, we can generate the Sierpinski triangle
repeating the process an infinite number of times (Fig. 1.7).

(c) The Von Koch Flake: This geometrical fractal can be constructed by dividing
each straight line segment of an equilateral triangle into three equal parts and
replacing the middle part with two segments of the same length. After infinite
number of iterations, the Von Koch flake is produced. Self-similarity of fractals
can be clearly noticed in the Von Koch flake (Fig. 1.8).

Complex Fractals
Among complex fractals, the Mandelbrot set is the most famous. Mandelbrot used
the recursive formula Zn ¼ Z2

n�1 þ C, where C is a real number and Z is a complex
number to create the Mandelbrot set. Figure 1.9 depicts a Mandelbrot set.

Fig. 1.6 The Cantor set. (Source: https://en.wikipedia.org/wiki/Cantor_set#/media/File:Cantor_
set_in_seven_iterations.svg)

Fig. 1.7 The Sierpinski
triangle. (Source: https://
commons.wikimedia.org/
wiki/File:Sierpinski_
triangle.svg)
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Julia set: Julia sets, named after Gaston Julia (1893–1978), arise from analyzing
the dynamics of complex functions. Julia sets are strictly connected with the
Mandelbrot set. Julia sets can be generated using the same iterative function as
that of the Mandelbrot set, the only difference being the way the formula is used. To
generate a Mandelbrot set, we repeat the formula for each point C of the complex
plane, always starting with Zn�1¼ 0. For generating a Julia set, the value of C is kept
constant during the generation process, while value of Zn�1 keeps changing. The

Fig. 1.8 The Von Koch
flake. (Source: https://
commons.wikimedia.org/
wiki/File:KochFlake.svg)

Fig. 1.9 The Mandelbrot
set. (Source: https://
commons.wikimedia.org/
wiki/File:Mandelbrot_set_
with_coloured_
environment.png)
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structure of the Julia set is decided by the value of C, or each point of the complex
plane is associated with a specific Julia set (Patrzalek 2006). Figure 1.10 depicts a
typical Julia set.

All the above fractals resemble self-similarity. Fractal dimension which is a value
in fraction is determined by the amount of self-similarity in a fractal which is
different from the conventional Euclidean dimension (Ge and Leung 2013). Felix
Hausdorff (1919) was the first to define a non-integer dimension in describing
monster functions. The unevenness of a time series can be subdivided repeatedly
into self-similar components. Fractal size can be determined by the fractional
dimension (FD). FD is the main tool to describe fractal geometry and the heteroge-
neity of irregular shapes (Lopes and Betrouni 2009). FD works like a magnifier,
zooming and comparing different portions of the signal with the entire signal.
Higuchi algorithm (Higuchi 1988) is one of the most efficient methods for calculat-
ing the fractal dimension (Simjanoska et al. 2018). There are other methods like
box-counting method (Block et al. 1990), Kartz method (Kartz 1988), etc.

Fractals can be classified into two groups: monofractals and multifractals. If in
different regions of the system the scaling properties are equal, they are termed
monofractals, whereas for multifractals, the scaling properties are different in dif-
ferent regions of the system, thus making multifractals more complicated.
Multifractals have differently weighted fractals which have fractional dimensions
(Ghosh et al. 2004). Parameterization of fractal properties determines the behavior
and mechanisms of the underlying control systems (Mandelbrot 1995; Goldberger
et al. 2002).

Complex structures of living systems possess fractal-like geometry. Complex
anatomical structures in the human body show self-similarity at different scales
(Goldberger et al. 1990, 2002; Weibel 1991; Bassingthwaighte et al. 1994; Ayers
1997), for example, the blood vessel branching, networks of the tracheobronchial
tree and neural networks in the brain, the folds of the intestine, choroidal plexus, etc.
For describing the tracheobronchial tree, treelike fractals are very useful. Owing to
the redundancy and irregularity (Goldberger et al. 2002), fractal structures are
believed to be very stable (Zueva 2015). This stability of fractal geometry has
motivated us to use it in our study.

Fig. 1.10 The Julia set.
(Source: https://upload.
wikimedia.org/wikipedia/
commons/b/b1/Julia_set_%
28ice%29.png)
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Goldberger et al. (1990, 2002) and Ivanov et al. (1999) have reported the presence
of long-range correlations in variations of healthy heartbeat. Fluctuations of stride
interval of healthy human have been shown to exhibit scale invariance (Zueva 2015).
Chaotic behavior of healthy brain areas, single neurons, and neural networks has
been reported in many works (Babloyantz 1989; Schiff et al. 1994; Faure and Korn
2001; Korn and Faure 2003; Izhikevich 2007).

Multifractal behavior is also noticed in different physiologic processes. Instead of
one scaling parameter, multifractal systems are characterized by a singularity spec-
trum which defines distribution of scaling parameters termed Hölder exponents
(a generalization of the Hurst exponent). From the statistical properties of a time
series, the Hölder exponent (h) can be interpreted, where a value of 0� h� 0.5 is an
indication of anti-persistent behavior, i.e., increment at a particular interval will be
followed by a decrement and vice versa. If the value of h corresponds to 0.5, it is an
uncorrelated random walk where increase and decrease are equally likely. Finally if
the value of h > 0.5, persistence is noticed in the time series, i.e., an increment in one
particular interval will be followed by a further increment in the next interval
(Bishop et al. 2012).

Multifractal analysis is a useful analysis technique for the description of normal-
ized and stationary signals (Stanley and Meakin 1988). It presents observations on
the scaling behaviors of time series and also identifies spatial heterogeneity of
theoretical and experimental fractal patterns (Grassberger and Procaccia 1983).
Fixed-size box-counting algorithm (Halsey et al. 1986) is the most familiar numer-
ical implementation of multifractal analysis. The simplest type of multifractal
analysis is based upon the standard partition function multifractal formalism, devel-
oped for the multifractal characterization of normalized, stationary measures (Feder
1988; Barabasi and Vicsek 1991; Peitgen et al. 1992; Bacry et al. 2001). For
nonstationary time series that are affected by trends or that cannot be normalized,
the standard formalism is inefficient in providing correct results. Thus an improved
multifractal formalism method was developed, the wavelet transform modulus
maxima (WTMM) method (Muzy et al. 1991, 1994; Arneodo et al. 1995, 2000,
2002; Ivanov et al. 1999; Amaral et al. 2001; Silchenko and Hu 2001), which is
based on wavelet analysis and involves tracing the maxima lines in the continuous
wavelet transform over all scales (Kantelhardt et al. 2002).

1.5.1.1 Detrended Fractal Analysis

External influences, such as seasonal impacts on urban water consumptions (Gato
et al. 2007) and business cycles of trade volumes (Barsky and Miron 1989), conceal
the correlations in time series. Because of these external influences, correlated data
may seem to be uncorrelated, and uncorrelated data with long-term trends may
appear correlated. Thus removing these trends effectively is important for identify-
ing the underlying correlations in time series. Rescaled analysis (R/S) (Hurst 1951)
along with other non-detrended methodologies (Holschneider 1995) performs better
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with trend-eliminated long data series. But these methods are not suitable when the
time series is nonstationary (Ge and Leung 2013).

Peng et al. (1994) proposed the detrended fluctuation analysis (DFA) method as a
fractal scaling method which can detect long-range correlation in nonstationary
signals. It quantifies the complexity of signals using the fractal property (Peng
et al. 1995; Pikkujamsa et al. 1999). This method is a modified root mean square
method for the random walk. Mean square distance of the signal from the local trend
line is analyzed as a function of scale parameter. Power-law dependence (Golińska
2012) is usually found, and the exponent α quantifies the degree of correlation in a
signal. DFA has successfully been applied to diverse fields such as DNA sequences
(Ossadnik et al. 1994; Buldyrev et al. 1995), heart rate dynamics (Peng et al. 1995;
Bunde et al. 2000), neuron spiking (Blesic et al. 1999; Bahar et al. 2001), human gait
(Hausdorff et al. 1997), long-time weather records (Koscielny-Bunde et al. 1998;
Talkner and Weber 2000), cloud structure (Ivanova et al. 2000), geology (Malamud
and Turcotte 1999), ethnology (Alados and Huffman 2000), economic time series
(Liu et al. 1999; Vandewalle et al. 1999a, b; Mantegna and Stanley 2000), and solid-
state physics (Kantelhardt et al. 1999; Vandewalle et al. 1999a, b). The DFA method
can avoid spurious detection of correlations that are artifacts of nonstationarities in
the time series (Kantelhardt et al. 2002), but cannot characterize time series having
multifractal properties. It assumes that both stationary and nonstationary time series
are monofractal which can be quantified by a single scaling exponent. However there
are some time series which consists of many intermixed fractal subgroups which
exhibit multifractal scaling property. By analyzing series of different moments,
multifractality can be disclosed. Thus advanced fractal methods have become a
necessary requirement for identifying long-range correlation and multifractal prop-
erties of time series (Ge and Leung 2013).

Kantelhardt et al. (2002) proposed the multifractal detrended fluctuation analysis
(MF-DFA) to determine long-range correlation and multifractal property of time
series. MF-DFA has been used to reveal long-range dependency and multifractality
in hydrology (Kantelhardt et al. 2003), earthquake (Telesca et al. 2005, Telesca and
Lapenna 2006), economics (Du and Ning 2008), magnetic field data (Anh et al.
2007), and sunspot activities (Movahed et al. 2006). Due to the robust nature of this
method, it has also found potential use in studying neurological disorders too. In
MF-DFA method, a fluctuation function is defined which analyzes multifractal
features for different mathematical moments. The aim of the MF-DFA procedure
is principally to determine the behavior of the q-dependent fluctuation functions
Fq(s) with regard to the time scale s, for various values of order q. Each time series is
first transformed according to the MF-DFA algorithm (described in Appendix A),
and then some parameters are determined which substantiate the series’
multifractality. After obtaining the fluctuation function Fq(s) for different values of
order q ¼ (�10 to +10), the scaling behavior of the fluctuation function is deter-
mined by analyzing the log–log plots of Fq(s) versus log s for each value of q. If the
time series are long-range power-law correlated, Fq(s) increases, for large values of
s, as a power law, [Fq(s) ~ sh(q)]. The linear fit of log Fq(s) versus log s gives the
values of the generalized Hurst exponent h(q) which is used to determine the scaling
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behavior of a time series. For a monofractal time series, h(q) depends on q, and for a
multifractal one, there is significant dependence of h(q) on q. Next the classical
scaling exponent τ(q) is evaluated, and a non-linear dependence of τ(q) on q gives
evidence of multifractality in the time series as a linear dependence is indicative of
monofractal behavior. To obtain the multifractal spectrum, the singularity strength or
Hölder exponent α and dimension of the subset series f(α) are calculated. From the
plot of f(α) versus α, the width of the multifractal spectrum (w) is obtained which is
believed to be the measure of degree of complexity of a signal. Finally the auto-
correlation exponent (γ) is computed which measures how much the signal under
consideration is correlated in itself where the lower the value of γ, the higher is the
degree of correlation. The method is detailed in Appendix A.

Multifractal analysis using moving average was proposed to determine Hurst
exponent of self-affine signals (Vandewalle and Ausloos 1998). The detrending
moving average (DMA) method was later developed considering second-order dif-
ference between original signal and moving average function (Alessio et al. 2002).
The DMA methodology was extended to multifractal detrending moving average
(MF-DMA) to analyze multifractal time series and surfaces (Gu and Zhou 2010).

Several variables exist in nature which occurs simultaneously, and they show long-
range dependence or multifractal nature. For investigating the long-range cross-cor-
relation between two nonstationary time series, Podobnik and Stanley (2008) proposed
detrended cross-correlation analysis (DXA) which is the generalization of DFA
method. To determine the correlations between positive and negative fluctuations in
a single time series, Jun et al. (2006) introduced detrended cross-correlation method.
Podobnik et al. (2009a) used DXA method to reveal long-range power-law cross-
correlations in the random part of the underlying stochastic process and the cross-
correlation between volume change and price change (Podobnik et al. 2009b). The
DXA cross-correlation coefficient (Zebende 2011) calculated for climatological time
series (Vassoler and Zebende 2012) is based on overlapping windows. Later Podobnik
et al. (2011) calculated cross-correlation coefficient based on nonoverlapping win-
dows and determined its statistical significance both for nonoverlapping and
overlapping windows. To determine power-law cross-correlations between different
simultaneously recorded time series in the presence of nonstationary sinusoidal and
polynomial overlying trends, Horvatic et al. (2011) used DXA with varying orders of
polynomial ℓ. This new method was called DXA – ℓ(n) (n denoting the scale) was
applied to study meteorological data (Dutta et al. 2016).

With a motive to unveil the multifractal features of two cross-correlated signals,
Zhou (2008) introduced multifractal detrended cross-correlation analysis (MF-DXA)
which is the generalization of DXA method. Wang et al. (2010) investigated the
cross-correlations between Chinese A-share and B-share markets using the MF-DXA
method and founded the existence of multifractality. He and Chen (2011a, b) used
MF-DXA to state that multifractal cross-correlation characteristics are important both
in Chinese and US agricultural future markets. Yuan et al. (2012) reported
multifractality of cross-correlation between the Chinese stock price and trading
volume. Relevance of the method has also been noted using one- and
two-dimensional binomial measures, multifractal random walks (MRWs), and
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financial prices (Podobnik and Stanley 2008; Zhou 2008). The method has also been
applied to various physiological time series with high degree of success. We have
used the MF-DXA method to quantify the degree of cross-correlation of human gait
rhythm in healthy subjects and diseased group and also used it to detect the cross-
correlation between ECG and blood pressure signals during change of posture. In
MF-DXA, two time series are considered unlikely in MF-DFA where only a single
time series is considered. Firstly for two time series in consideration, the fluctuation
function Fq is determined. Likewise in MF-DFA here, two scaling behaviors of the
fluctuation functions are determined by analyzing log–log plots of fluctuation func-
tion Fq versus time scale s. For two cross-correlated time series, a power-law
relationship exists between the fluctuation functions and the scale s. The degree of
cross-correlation between the two series is given by exponent λ which is obtained
from the linear fit of log–log plots of fluctuation function and time scale. The cross-
correlation scaling exponent λ is generally average of the Hurst exponent of the two
time series. The dependence of scaling exponent (λ) on different orders of q is an
indication that the cross-correlated series are multifractal in nature. In this method,
multifractal width of the cross-correlated signal (wx) and the cross-correlation expo-
nent (γx) is also evaluated which measures the degree of multifractality and degree of
cross-correlation in the considered time series, respectively. A detailed description of
the method can be found in Appendix B.

1.5.2 Non-linear Analysis of Biomedical Signals

The fundamental features of biomedical signals may be apparently visible but cannot
be described by conventional methods like the average amplitude of the signal.
Biomedical signals possess a scale-invariant structure. Fractal analyses have been
used frequently to determine the scale-invariant structure in EEG, ECG, EMG, gait
analysis, etc. In inter-spike interval of neuron firing, inter-stride interval of human
walking, inter-breath interval of human respiration, and inter-beat intervals of the
human heart, the observation of scale-invariant features has helped in distinguishing
between healthy and pathological conditions (Ivanov et al. 1999; Peng et al. 2002;
Zheng et al. 2005; Hausdorff 2007) and between different types of pathological
conditions (Wang et al. 2007). In the branching of the nervous system and lungs
(Bassingthwaighte et al. 1990; Abbound et al. 1991; Weibel 1991; Krenz et al. 1992)
and bone structure (Parkinson and Fazzalari 1994), scale invariance has also been
noted. Different studies have advocated the fact that changes of scale-invariant
features of biomedical signals imitate alterations in adaptability of physiological
process. Fractal structure may change on successful treatment of pathological
conditions leading to improvement of health. Thus fractal methodology is the new
tool for prognosis and diagnosis of biomedical signals (Ihlen 2012). In this section a
brief review of different biomedical signals in the light of non-linear dynamics has
been discussed.
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1.5.2.1 Non-linear Analysis of EEG Signals

Since brain is widely accepted (Sanei and Chambers 2007; Thankor and Tong 2009)
to be a chaotic dynamic system, the generated EEG signals are also chaotic. An EEG
signal is also considered to be chaotic when its amplitude changes randomly with
time (Rodrıguez-Bermudez and Garcıa-Laencina 2015). Several studies have dem-
onstrated that EEG signals are extremely non-linear and nonstationary. Yuan et al.
(2011) used non-linear features for EEG classification, resulting in which an accu-
racy of 96.5% was achieved.

Non-linear methods based on the Lyapunov exponent (Faust et al. 2015), higher-
order spectra (HOS) (Acharya et al. 2012b), information theory and entropy, and
intrinsic mode functions (IMF) are used to detect and extract non-linear features of
EEG signals of epileptic patients (Kumar et al. 2010; Fu et al. 2015). Acharya et al.
(2009, 2012b) extracted the non-linear HOS features, approximation entropy, and
sample entropy from EEG segments. To determine the classification performance
among normal, interictal, and ictal EEG signals, different classifiers were used. To
decompose EEG signals into groups of intrinsic mode functions (IMFs), Fu et al.
(2015) applied the empirical mode decomposition (EMD) method. Different artifi-
cial intelligent and machine learning techniques are used also for EEG signal
classification such as artificial neural network (ANN) (Minasyan et al. 2010; Nasehi
and Pourghassem 2013), support vector machines (SVM) (Meier et al. 2008; Shoeb
and Guttag 2010; Alotaiby et al. 2015; Samiee et al. 2015), and k-nearest neighbor
(KNN) (Fergus et al. 2016).

1.5.2.2 Non-linear Analysis of ECG Signals

Over the decades analysis of ECG signals has been a major research interest in
biomedical signal processing. ECG is the widely used method for the cardiac
function assessment. It is extensively available and inexpensive process. Quantita-
tive assessment is helpful as subjective interpretations are full of inconsistencies and
are inaccurate. One useful method for quantitative analysis of ECG signals is the
fractal method. Pikkujamsa et al. (2001) applied DFA to determine the fractal
correlation features of RR interval dynamics and the features of HR dynamics
which traditional analysis method fail to detect. The authors argued that increased
cardiac vulnerability and greater risk of death of patients with and without heart
disease may be indicated by the breakdown of fractal organization into beat-to-beat
RR interval. Multiscale entropy can discriminate RR intervals from controls and
those with heart disorder such as atrial fibrillation (Costa et al. 2002). Another
non-linear method, symbolic dynamics, shows the advantage over deterministic
and statistical methods in differentiating between ventricular tachycardia and ven-
tricular fibrillation patients (Wessel et al. 2000). Gierałtowski et al. (2012) proposed
a multifractal and multiscale method for the DFA of heart rate variability, exploiting
the possibility of adapting the multifractal DFA algorithm in order to provide
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estimates separately at different scales. This method was recently applied for model-
ing heart rate variability during sleep and blood pressure variability (Solinski et al.
2016; Castiglioni et al. 2017). Ghosh et al. (2013) employed fractal analysis for
comparing ECG signals of control subjects and subjects suffering from intracardiac
atrial fibrillation. In case of intracardiac atrial fibrillation, they reported higher values
of fractal dimension in comparison to normal ECG signals. This implies increase of
ECG complexity for intracardiac atrial fibrillation. D’Addio et al. (2014) did fractal
analysis of cardiac patients while resting, stress, and early and late recovery phases
of ECG stress test and reported drastic change in values of fractal dimension from
resting to stress phase. Applying fractal analysis on ECG signal of people
performing Kundalini Yoga and Chi meditation, Bhaduri and Ghosh (2016) found
increase in the complexity of cardiac dynamics during meditation.

Some researchers have applied different types of entropy method for analyzing
the ECG signal. Joseph et al. (2004) determined the effect of reflexological stimu-
lation on heart rate variability and demonstrated increment of Kolmogorov–Sinei
entropy in reflexological stimulation compared to relaxed sitting. This implied that
the ECG signal turns more random with reflexology. Kamath (2012) examined
Renyi and Shannon entropy for distinguishing normal and ventricular tachycardia
or fibrillation (VT–VF) subjects. He found Renyi entropy to exceed Shannon
entropy with very high sensitivity, specificity, predictivity, and accuracy.

Baumert et al. (2014) evaluated sample entropy and cross-sample entropy of beat-
to-beat variability of heart rate and QT interval during head-up tilt and mental
arithmetic stress. Reduced sample entropy of RR intervals and cross-sample entropy
during head-up tilt were reported. In the case of mental arithmetic stress, significant
reduction in coupling was noticed directed from RR to QT. Namazi and Kulish
(2016c) examined the relation between the structures of heart rate and the olfactory
stimulus (odorant) and reported complexity of the heart rate to be coupled with the
molecular complexity of the odorant. Lower fractal heart rate was found for more
structurally complex odorant. Odorant with higher entropy has heart rate of lower
approximate entropy. The authors opined that the method can be applied and
investigated in the case of patients with heart diseases for rehabilitation purpose.

1.5.2.3 Non-linear Analysis of EMG Signals

Electromyography signals have found application in the areas which include neuro-
logical diagnosis, neuromuscular and psychomotor research, sports medicine, pros-
thetics, rehabilitation, and robot limb control (Bu et al. 2009; Fukuda et al. 2011;
Gutiérrez et al. 2012; Baspinar et al. 2013).

Surface EMG signals are assumed to be stationary when they are analyzed using
linear methods in time and frequency domain considering smaller intervals of
60–1000 ms (Inbar et al. 1986; Bilodeau et al. 1997; Thongpanja et al. 2013; Chen
et al. 2014). According to Venugopal and Ramakrishnan (2014), even if the
nonstationary characteristics of SEMG signals can be handled by time–frequency
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method, it is still believed to originate from linear muscular system. Generation of
SEMG signals from complex self-regulating system and its multifractal character is
evident from the works of Gupta et al. (1997), Arjunan and Kumar (2007), and Marri
et al. (2014).

Estimation of the elbow joint angle with the help of artificial neural networks
(ANN) was performed by Suryanarayanan et al. (1995) from EMG signals. Hu et al.
(2005) calculated FD from filtered SEMG signals in order to discriminate between
forearm supination (FS) and forearm pronation (FP) movements. The study demon-
strated the usefulness of FD in capturing different motion patterns of SEMG signals.

Mesin et al. (2009) compared the FD of EMG signals with other muscle fatigue
indexes. The study reported that changes in conduction velocity have minimum
effect on FD of EMG signal; rather FD depends on the synchronization of motor unit
from which they inferred that FD is not an index of peripheral but of central fatigue
(Belbasis and Fuss 2018).

Mobasser et al. (2007) estimated the elbow-induced wrist force with a fast
orthogonal search (FOS), which is a time domain method for rapid non-linear system
identification. Ullah and Jung-Hoon (2009) developed a new mathematical model
for elbow joint estimation using EMG signals. Arjunan and Kumar (2010) used
fractal measures to distinguish SEMG signals of forearm muscles. Artemiadis and
Kyriakopoulos (2011) used a state-space model to determine human arm kinematics
from myoelectric activity produced by specific muscle groups of the upper arm and
forearm. Vogel et al. (2011) employed support vector machines (SVM) to decode
human arm–hand system motion from EMG signals. Clancy et al. (2012) proposed
non-linear dynamic models to determine joint torque for elbow. To improve the
precision of elbow torque value, second- or third-degree polynomial functions
(EMGσ) were added to a non-linear parametric model, and the parameters were
evaluated using pseudoinverse and ridge regression method (Aung and Al-Jumaily
2013). To evaluate the commencement of fatigue, a procedure was presented in
which SEMG signals of biceps brachii muscles and multifractal technique dynamic
contraction were used (Marri and Swaminathan 2015, 2016).

Andrade et al. (2006) used the empirical mode decomposition (EMD) technique
for filtering EMG signals that can decompose an EMG signal into a set of intrinsic
mode functions (IMFs). Sezgin (2012) used higher-order spectra (HOS) for classi-
fying EMG signals. Several authors have used sample entropy to unveil the com-
plexity of SEMG signals (Cashaback et al. 2013; Lake et al. 2002; Molina-Picó et al.
2011; Ruonala et al. 2014).

Thus the classification of EMG signals is also very important for detecting
diseases. Handicapped patients or patients suffering from various neurological
disorders like Parkinson’s, Huntington’s, amyotrophic lateral sclerosis, etc. have
very different EMG features compared to healthy ones. These patients have move-
ment disorders and different muscle structures too (Chowdhury et al. 2013). In
Chap. 4 we have quantified EMG signals of myopathy and neuropathy and com-
pared the results with those of healthy subjects using a non-linear technique. The
method successfully distinguished healthy from the diseased.
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1.6 Review of Studies on Neurological Disorders

To anticipate future behavior of a time series, it is important to define a set of rules or
recognize patterns from the past. Linear regression models like autoregressive (AR),
moving average (MA), and autoregressive moving average (ARMA) are broadly
used for forecasting time series (Hoon et al. 1996). But forecasting with these
methods does not produce accurate results when the time series are non-linear and
their characteristics vary with time. Thus several computing techniques with
non-linear methods have been developed to solve the problem of linear approach
taking into account non-linearity and uncertainty of time series data (Kim et al.
2013). In this section a brief review of different neurological disorders with linear
and non-linear techniques is presented.

1.6.1 Epilepsy

Epilepsy is a frequently encountered neurological disorder which occurs when some
of the nerve cells erratically acquire huge amounts of electric impulses for a very
short interval. By examining the EEG signals, seizure can be anticipated. Seizure
warnings can be given a priori by examining the changes in the brain waves so that
alerts can be sent to patients hence avoiding damage to the brain or injury during
seizure (Kim et al. 2013).

The brain being a non-linear system, the signals obtained from the brain through
EEG also have an irregular and complex structure. Thus EEG data of epilepsy is a
complex time series. Due to continuous interaction with external components, EEG
signals show changes with time (Andrzejak et al. 2001). Noise is present while
measuring EEG data. Owing to the non-linearity, abnormalities, and noise, it is
difficult to forecast epilepsy EEG data. Thus, an appropriate and accurate forecasting
method is necessary (Kim et al. 2013).

Research and advancements in detecting automatic EEG seizures, quantifying
and recognizing them began since 1970. In a preliminary study, Gotman (1982) put
forward an automated seizure detection technique based on half-wave decomposi-
tion of EEG signals. Gabor et al. (1996) later presented a technique analyzing
epileptic seizures using wavelets and self-organizing neural networks. Recent
years have seen the surge of development of automated methods that can predict
seizure using EEG data. Univariate, bivariate, and multivariate algorithms were
introduced to tackle seizure detection and prediction based on the EEG analysis of
single or multiple electrodes (Stollberger et al. 2000; Saab and Gotman 2005;
Bhavaraju et al. 2006). To detect epileptic seizures or other abnormal episodes in
EEG automatically, Li (2002) suggested a method based on multi-resolution anal-
ysis. Iasemidis et al. (2003) presented an adaptive seizure prediction algorithm
(ASPA) built on the merging of short-term maximum Lyapunov exponents
(STLmax) among critical electrodes in the pre-ictal period. For predicting epileptic
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seizures, Gigola et al. (2004) used wavelet analysis built on the evolution of
aggregate energy. Prediction algorithms were also presented by Li and Yao (2005)
based on the wavelet transform and fuzzy similarity measurements of EEG data.
Based on similarity index, Li and Ouyang (2006) proposed the dynamical similarity
measure to predict epileptic seizures using EEG data. Liu et al. (2009) introduced
particle filtering, and Zandi et al. (2009) analyzed entropy level corresponding to
zero-crossing intervals in scalp EEG and its derivatives for seizure prediction. For
extracting correlation dimension from intracranial EEG records, Rabbi et al. (2010)
employed non-linear methods to design a fuzzy rule-based system for predicting
seizures. Some researchers have also used linear methods such as autoregressive and
spectral analysis for forecasting seizure from the EEG data (Rogowski et al. 1981;
Salant et al. 1998). Kahn and Gotman (2003) applied continuous wavelet transform
(CWT) for seizure detection on intracerebral data.

Siuly et al. (2011) introduced least square support vector machine (LS-SVM) to
classify epileptic EEG signals. Shen et al. (2013) introduced a method based on a
cascade of wavelet-approximate entropy for feature extraction in the epileptic EEG
signal classification. For classification they tested three methods, namely, support
vector machine (SVM), k-nearest neighbor (kNN), and radial basis function neural
network (RBFNN), to find out the one with the best performance. Siuly and Li (2014)
introduced a new algorithm, namely, optimum allocation approach, for feature
extraction. After extracting features they were evaluated using multiclass least square
support vector machine (MLS-SVM) for classification of epileptic EEG signals.

In spite of availability of a variety of drugs and surgical treatments, seizure is still
uncurbed in more than 25% of the patients (Pavel et al. 2017). Most of the seizure
does not cause long-lasting injury to the brain, but some patients may die due to
cardiac or respiratory complications and sudden unexpected death in epilepsy
(SUDEP). In those subjects who sleep alone and have generalized tonic–clonic
seizures (GTCS), SUDEP is more in them (Lamberts et al. 2012). Heart rate
variability (HRV) analyses may help to identify epileptic seizures. Heart rate
changes associated with seizures are more generic and have been well-studied
(Eggleston et al. 2014).

1.6.2 Dementia (Alzheimer’s Disease)

With gradual dysfunction of the neurons and death of brain cells, the central nervous
system develops a group of disorders called dementia. It is a syndrome usually seen
in aged people in which attention, memory, executive function, visual–spatial
ability, and language decrease (Al-Qazzaz et al. 2014b). Different types of dementia
include Alzheimer’s disease (AD), Parkinson’s disease (PD), dementia with Lewy
bodies, Creutzfeldt–Jakob disease, normal pressure hydrocephalus, vascular demen-
tia, and front temporal dementia (DeKosky and Marek 2003; Minguez and Winblad
2010). Among the different types of dementia, AD is the most common (Siuly and
Zhang 2016).
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Hirata et al. (2005) developed software based on the voxel-based specific region
analysis for AD, which can automatically analyze 3D MRI data as a series of
segmentation, anatomical standardization, and smoothing using a software and
Z-score analysis. Li et al. (2007) employed support vector machine (SVM) to
determine the hippocampal volume changes in Alzheimer’s. The method is helpful
in distinguishing Alzheimer’s from control. With the help of linear support vector,
Klöppel et al. (2008) introduced a computer-aided diagnosis (CAD) procedure for
diagnosis of Alzheimer’s from MRI scans. For distinguishing aged healthy subjects
with Alzheimer’s and mild cognitive impairment (MCI), Colliot et al. (2008)
employed an automated segmentation method. Taking into account the common
risk factors (Siuly and Zhang 2016), Joshi et al. (2010) applied neural network
methods (NN) for Alzheimer’s classification. To analyze MRI image of Alzheimer’s
patient, Hamou et al. (2011) presented a computerized technique based on cluster
analysis and decision tree. For detecting dementia MRI and EEG – the clinical
biomarker – both can detect the changes that occur in the neurons (Al-Qazzaz et al.
2014b). Detection of dementia in its early stages by studying the EEG signals has
been reported by many (Helkala et al. 1991; Claus et al. 1998, 2000; Petrosian et al.
2001; Henderson et al. 2006). In a recent study, Hata et al. (2015) investigated EEG
of Alzheimer’s patients and determined lagged phase synchronization, a measure
which connects the functions of the brain. They found Alzheimer’s disease patient to
show decreased lagged phase synchronization in delta band among the cortical
regions.

1.6.3 Parkinson’s Disease

Changes in EEG brain signals have also been noticed in Parkinson’s disease. EEG of
Parkinson’s subjects was found to exhibit non-linear features by Stam et al. (1995).
Pezard et al. (2001) reported an increased complexity in Parkinson’s group com-
pared to control group which was also confirmed in 2013 by Han et al. (2013) who
opined that the rhythm of EEG itself has high degree of complexity. Morales and
Kolaczyk (2002) used a wavelet-based multifractal methodology to examine struc-
tural differences in mediolateral and anteroposterior sway between center-of-pres-
sure (COP) traces of healthy and Parkinson’s patients. Interval inter-spike series
(ISIs) obtained from the neurons of basal ganglia for control and Parkinson’s sub-
jects in wakeful state was also reported to have non-linear temporal structure (Lim
et al. 2010).

A person’s walking capability is one of the major components of mobility by
which dynamics of gait disorder can be understood. Several authors in their work
have advocated gait abnormalities (Jankovic and Kapadia 2001; Schaafsma et al.
2003; Hausdorff 2009; Hove et al. 2012). Gait disorders in PD can be characterized
by shortened stride length and reduced stride velocity. When linear and non-linear
methods are applied simultaneously, gait variability shows complementary charac-
teristics and its change with age and disease (Hausdorff 2005).
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DFA has been used to quantify the structure of stride-to-stride variability in PD
(Bartsch et al. 2007; Hausdorff 2009; Hove et al. 2012). Some authors reported the
time-dependent organization of Parkinsonian tremor to be more regular (lower
approximate entropy, ApEn) in PD patients compared to those with the physiolog-
ical tremor monitored in the healthy control group (Meigal et al. 2012; Vaillancourt
and Newell 2000). Kirchner et al. (2014) quantified stride time variability of PD
patients and healthy controls using coefficient of variation (CV), DFA, and adaptive
fractal analysis (AFA). Dick and Nozdrachev (2015) showed the wavelet character-
istic and the multifractal parameters significantly differ in the tremor of healthy
subjects and patients with PD. In another study Dick and Nozdrachev (2016) did a
comparative analysis of the wavelet, multifractal, and recurrent features of the
involuntary oscillations of the trajectory of the isometric force of the hands of
healthy volunteers, patients with Parkinson’s disease, and subjects with essential
tremor syndrome. For essential tremor, the authors observed a significant enhance-
ment of the wavelet spectrum energy and a decrease of the oscillation complexity
which was evident from the occurrence of clear peaks in the power spectra, a
decrease in the degree of multifractality, the emergence of a quasiperiodic structure
in the recurrence diagrams, an increase in determinism, and a decrease of the entropy
of recurrence time density. All these trends were found to be increased for the
Parkinsonian tremor data. These characteristics enabled them to quantitatively
estimate the degree of deviation of motor function from the healthy case. Afsar
et al. (2016) applied three different complexity measures, namely, Shannon,
Kullback–Leibler, and Klimontovich’s renormalized entropies on gait data of
patients with PD disease and healthy controls. For stride time variability of gait,
they found renormalized entropy technique recognized subjects with 80% sensitiv-
ity, whereas 26.7% and 13.3% sensitivity were observed with Shannon entropy and
the Kullback–Leibler relative entropy, respectively.

1.6.4 Huntington’s Disease

In another neurological disorder, the Huntington’s disease major pathological changes
are observed in the basal ganglia, causing neural projection loss in the striatum
(caudate nucleus and putamen) (Penney and Young 1993). Bylsma et al. (1994)
applied quantitative power spectral analysis (PSA) to frontal, temporal, and occipital
EEGs of Huntington’s disease patients and healthy control subjects and found abnor-
mal behavior of EEG of HD compared to healthy controls. Merrikh-Bayat (2011)
estimated the correlation dimension of PD, HD, and ALS and observed that that the
average dimension of Parkinson’s and Huntington’s diseases is more than the average
dimension of healthy control subjects, while the average dimension of ALS is less
than it. Danoudis and Iansek (2014) compared the stride length and cadence relation-
ship in HD, PD, and healthy subjects using linear regression analysis. They found the
scaling of stride length to be disrupted in participants with HD but not the regulation
of cadence. The authors concluded that the results obtained from the study will initiate
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clinicians to develop productive measures to improve mobility and function in people
with HD. Bennasar et al. (2016) used accelerometers to determine the intensity of
some of the functional symptoms in HD patients. Authors used state-of-the-art
selection procedure to determine the most appropriate feature which can help to
differentiate healthy from HD subjects. Warner and Sampalo (2016) proposed disease
progression models for HD. The models had a combined effect and can predict
continuous marker of HD state as a function of age and cytosine–adenine–guanine
(CAG – the genetic factor that drives HD pathology) length.

1.6.5 Motor Neuron Disease (MND)

A rare neurodegenerative disorder in older population which causes damage to
motor neurons in the cortex, brain stem, and spinal cord is called motor neuron
disease (MND). Its manifestation is found in the upper and lower motor neurons, and
the bulbar, limb, and respiratory muscles are found to be affected. From the time of
inception of the disorder, a patient survives 3–5 years, while some live longer.
Respiratory failure is the prime cause of death (Forsgren et al. 1983). The most
common variant of motor neuron disease is amyotrophic lateral sclerosis (ALS). It is
also known as Lou Gehrig’s disease. Since action of the muscles is controlled by the
nervous system, electromyography signals can be used to determine the essential
characteristics of the disease in individuals (Fattah et al. 2013). Few works have
reported the effect of ALS on EMG signal by analyzing it in time and frequency
domains (Lambert and Mulder 1957; Lambert 1969; Behnia and Kelly 1991; Leigh
and Al-Chalabi 2000; Kasi 2009). Zhou et al. (2012) in a study argued that the
recently developed high-density surface electromyography (HD-SEMG) seems to be
a suitable method for capturing fasciculation potentials (FPs) compared to intramus-
cular EMG. Fattah et al. (2012) analyzed EMG signals recorded from healthy and
ALS subjects in time and frequency domain. They presented typical features like
auto-correlation, zero-crossing rate, and Fourier transform to diagnose ALS disease.
To categorize ALS, k-nearest neighbor classifier was used in a leave-one-out cross
validation process. In another study, Fattah et al. (2013) introduced discrete wavelet
transform (DWT) features to categorize healthy and ALS patients. Tafhim and
Kshirsagar (2014) performed a study of EMG classification of signals recorded
from bicep muscles during 25%, 50%, and 75% muscle contraction of normal,
myopathy, and neuropathy subjects, respectively, using neural network classifiers.
Shen et al. (2015) carried out a review and voxel-wise meta-analysis of works to
analyze the activities of brain in healthy group and MND subjects to determine
common issues in the studies. The study confined to the use of fMRI signals in motor
neuron disease. Their work provided reliable results stating that MND is not only
restricted to the motor system rather it is a disorder which involves multiple systems
including extra-motor cortex areas. The authors also opined that MND causes
cognitive dysfunction and deficiencies in social, emotional, and sensory processes
are noticed.
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Kehri et al. (2017) proposed neuromuscular disease classification from EMG
signals based on different combinations of feature extraction methods and types of
classifiers. Combination of wavelet transform (WT) and support vector machine
(SVM) improved the classification accuracy than other combinations such as DWT
with artificial neural network (ANN), independent component analysis (ICA) with
multilayer perceptron neural network (MLPN), principal component analysis (PCA)
with ANN, and DWTwith probabilistic neural network (PNN). Chorage and Sonone
(2017) used DWT to analyze SEMG signal for ALS identification. They also
considered time domain parameters, like zero-crossing rate and root mean square,
and frequency domain parameters like mean frequency and waveform length. From
the time domain, frequency domain, and wavelet domain feature extraction, they
compared the threshold values for the different parameters in above mentioned
domains to identify the ALS patient with more accuracy. In a recent study, Kiran
et al. (2018) to compare EMG signals in ALS and control subjects used tunable
Q-factor wavelet transform (TQWT). To derive statistical characteristics like mean
absolute deviation, interquartile range, kurtosis, mode, and entropy TQWT
disintegrated EMG signal into sub-bands. To compare EMG data of ALS and control
subjects, the features extracted were tested on k-nearest neighbor and least squares
support vector machine classifiers. From the study the authors concluded that in
comparison to other techniques, their method was superior as better classification
outcomes were obtained.

The following chapters will present details of the study in the areas mentioned above.
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Chapter 2
Multifractal Study of EEG Signal
of Subjects with Epilepsy and Alzheimer’s

Abstract Epilepsy has been identified as a common disorder of central nervous
system affecting a huge size of population. This chapter presents a new approach for
studying EEG patterns of the human brain in different physiological and patholog-
ical states in epileptic patients and normal people with the help of multifractal
detrended fluctuation analysis. The chapter also includes a brief discussion about
Alzheimer’s diseases and its diagnosis techniques. Further multifractal cross-
correlation study was also applied on EEG data taken from patients in both stages
– during seizure and in seizure-free interval. The chapter ends with a discussion of
how this method can be used as a possible biomarker of epilepsy.

2.1 Introduction

Complex dynamical entities all around us can be determined by set of non-linear
differential equations. Non-linearity is the principle behind chaotic behavior of the
complex systems. Complex systems may comprise of systems found in the environ-
ment, in ecology, in biology, or even in finance (Morales-Matamoros et al. 2009).
The human brain is an example of an extensively complicated biological entity that
continuously transmits information and also processes it so that an individual can
perform the required tasks. The neural system which is made up of billions of nerve
cells called neurons performs its task by interacting with the neurons in the central
nervous system (CNS) and the peripheral neural system. At the cellular level,
messages are transmitted and processed by the neurons with the help of action
potentials and neural firing (called spikes). These electrical impulses are recorded
in the form of electroencephalogram (EEG) from the scalp (Thakor and Tong 2004).

In a normal healthy state, the signals recorded from the brain have a complex and
irregular pattern, but in anomalous circumstances like epileptic seizures, high ampli-
tudes of the quasi-periodic waveforms are noticed (Haghighi and Markazi 2017). A
seizure is an abrupt rise of electrical activity in the brain which disrupts the behavior
and feelings of a person for a small interval of time. When the brain suffers from
repeated seizures caused by abnormal communication of a group of neurons,
epilepsy is said to be developed (Morales-Matamoros et al. 2009). Based on clinical
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manifestation, epileptic seizures can be divided into partial or focal and generalized
(Tzallas et al. 2007). When a specific part of the brain encounters enormous
synchronous electrical discharge, focal epileptic seizure is said to occur, and when
the entire brain is affected by the discharge, a generalized epileptic seizure occurs.
Both focal and generalized seizures can develop at all ages but it mostly affects
younger and older population (Hassan et al. 2016). People often experience signif-
icant problems in personal relationships and employment and develop psychological
problems as well. Due to inappropriate medical cure, researchers in the
domain of biomedical sciences thought to develop methods to forecast the clinical
onset of seizures in order to undergo a surgery. To upgrade prediction algorithms
and stimulation-based control techniques (Murphy and Patil 2003; Ker et al. 2011;
Berenyi et al. 2012; Lin et al. 2013; Carron et al. 2013; Bergey et al. 2015; Salam
et al. 2016; Wang et al. 2016), it is necessary to recognize the manner by which a
person goes from a normal state to an abnormal epileptic state. This transition has
been poorly understood over the years. The dynamic features of various
epileptic disorders (Lopes da Silva et al. 2003a) cannot be described by a single
mechanism. Different methods have matured to define the dynamics of seizure
generation and termination (Lopes da Silva et al. 2003b; Suffczynski et al. 2004;
Breakspear 2005; Wendling et al. 2005; Kim et al. 2009; Marten et al. 2009;
Goodfellow et al. 2011; Taylor and Baier 2011; Taylor et al. 2014; Jirsa et al.
2014; Milanowski and Suffczynski 2016; Fan et al. 2016). The dynamic reasons
for these transitions are attributed to bifurcation, bistability, excitability, and inter-
mittency (Baier et al. 2012).

2.2 Neurological Disorder: Epilepsy, Alzheimer’s,
and EEG Data

2.2.1 Epilepsy

Epilepsy is one of the most common neurological disorders (Acharya et al. 2012) of
the central nervous system. On an average 0.6–0.8% of population around the world,
i.e., around 50 million, people globally are affected with epilepsy (Mormann et al.
2007). Depending on the intensity of epilepsy, persistent seizures may cause changes
in perception and behavior (Devinsky and Vazquez 1993; Barnes and Paolicchi
2008; Austin et al. 2011), mild degree of convulsions (Bromfield et al. 2006;
Vingerhoets 2006), and temporary loss of consciousness (Blumenfeld 2012; Curia
et al. 2014). Around one-third of epileptic patients are drug resistant. Though they
receive high dose of epileptic medications, they continue to have seizures. A surgical
resection of the damaged brain or location of the seizure origin can eradicate or
reduce the occurrence of epileptic seizure. A presurgical evaluation from a team of
experienced neurologists, neurophysiologists, neuropsychologists, social workers,
radiologists, nurses, and epilepsy neurosurgeons is important before a patient is sent

48 2 Multifractal Study of EEG Signal of Subjects with Epilepsy and Alzheimer’s



for surgery. A patient’s previous health records, physical state, social conditions,
seizure symptoms and its intensity, and clinical examinations are essential elements
of presurgical evaluation. When all presurgical evaluation directs toward a particular
conclusion about occurrence of focal seizure, then a surgery of the patient may be
done. EEG and brain imaging, axial computerized tomography (cerebral scanner),
magnetic resonance scanning, and positron emission tomography (PET) are the vital
diagnostic test to detect epilepsy (Morales-Matamoros et al. 2009).

By now we know that electroencephalography (EEG) is a vital tool to detect the
non-linear electrical function of the brain’s nerve cells, thus making it an important
means for assessment and analysis of epilepsy (Rizvi et al. 2013). EEG signals have
been observed to include spikes, sharp waves, and spike-and-wave complexes before
seizure, in between two seizures and all along seizures (Li et al. 2012). At present
manual scanning of EEG recordings is done to detect epileptic activity, which takes
several days to complete (Ocak 2009), thus making detection technique time con-
suming and error prone (Tzallas et al. 2009). Thus it is the need of the day to develop
potential and reliable procedures to identify epilepsy from EEG signals (Tzallas et al.
2007; Guo et al. 2011; Fu et al. 2015; Hassan et al. 2016). An electrographic seizure
has four phases: (a) the phase prior to seizure is known as pre-ictal, (b) the period of
occurrence of seizure is known as ictal, (c) postictal is the period after seizure, and
(d) the period between seizure is called interictal (Morales-Matamoros et al. 2009).

Several researchers have proposed automated methods for detecting epileptic
activity (Ocak 2009; Lee et al. 2014; Fu et al. 2015) using Fourier spectral analysis
for EEG signal extraction assuming EEG signals to be stationary (Polat and Güne
2007). But owing to complex character of the EEG signals, linear analysis tech-
niques fail to capture the minute changes that occur in the signal which is important
to understand to help in diagnosis and prognosis of epileptic seizure. Apart from
Fourier transforms, wavelet transforms are also employed to detect EEG time series.

The brain is a complex, non-linear system, whereas the Fourier Spectra is a linear
system. To eliminate the discrepancy between these two systems, a new technique of
non-linear analysis was developed which may be used as an effective tool for highly
complex non-linear systems, namely, brain’s dynamical system (Easwaramoorthy
and Uthayakumar 2010).

In 1998 according to Andreu et al. (1998), there is no linear analysis technique
that can anticipate the start of epileptic crisis. A drastic change in EEG from being
irregular in case of healthy brain is noticed when an epileptic seizure starts.
The electrical activity of EEG recorded during seizure has been found to show
violent amplitude fluctuations but regular rhythmic pattern. Loss of complexity due
to coordination of neurons population is observed before and during an epileptic
seizure (Morales-Matamoros et al. 2009). Due to violent amplitude fluctuations,
the degree of complexity of the brain waves is reduced instead of enhancing (Torres
1991; Andreu et al. 1998; Contreras 2007).

Gutiérrez (2001) introduced an algorithm to gather some characteristic informa-
tion from the electrocorticographic signal so that waves from epileptic patients can
be categorized as epileptic waves. The author used the wavelet method and the
correlation function to determine the exact location of epileptogenic focus and its
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extent. He opined that both methods resemble the waves to be epileptic just like an
electroencephalographist would do. The conclusion is significant as the neurosur-
geon can arrive at decision faster to operate the focus. Sackellares et al. (2002)
established that temporal lobe epilepsy can be defined by episodes of uncontrolled
electrical discharges. These discharges comprise of coordinated activity of mesial
temporal neurons from the hippocampus. Owing to the chaotic and non-linear nature
of the epileptic brain, the authors have hypothesized that there is continuous and
sudden shift from in and out of the ictal state because epilepsy self-organizes the
brain from chaos to order during phase transitions. When spatiotemporal chaos in the
brain fails, seizure produces a mechanism for retreating the brain to a chaotic or
normal state.

The detrended fluctuation analysis (DFA) method which has been widely used to
characterize non-linear time series revealed the long-range power–law correlation in
EEG, indicating time scale invariant and fractal structure (Watters 2000; Watters and
Martin 2004). Thus fractal geometry is an essential way to determine epilepsy.
Unlike the Fourier spectra, the fractal spectra can determine fractal time series in
both amplitude and frequency domain by fractal dimension (FD) (Kulish et al.
2006). Esteller et al. (2002) determined the fractal dimension in cortex electroen-
cephalogram (IEEG, ECoG – electrocorticography) using Katz algorithm and found
low FD during pre-ictal period, increased FD at beginning of seizure, and decrease in
FD while reaching the lowest level of complexity. Thus they concluded that FD
measure is a better precision algorithm which can detect minute changes in seizure
waves which is difficult for epileptologist. Fractal dimension of human cerebellum in
magnetic resonance images of 24 healthy young subjects was measured by Jing et al.
(2003) using the box-counting method. Peiris et al. (2005) used Higuchi’s algorithm
to calculated fractal dimension of EEG. Correlation between FD of EEG and
behavioral microsleeps during a visuomotor tracking task was found to be modest.
Janjarasjit and Loparo (2009) analyzed self-similar characteristics of ECoG
(electrocorticography) data from an epilepsy patient using the wavelet-based fractal
method and observed significantly higher value of spectral exponent compared to
other states of the brain.

For forecasting seizure from interictal EEG, Andrzejak et al. (2001) employed
correlation dimension and mean phase coherence. Using non-linear analysis of
similarity between EEG recordings, Quyen et al. (2001) predicted epileptic seizure
in real time. Delay vector variance (DVV) technique was used by Gautama et al.
(2003) to improve EEG time series identification of epileptic seizure. To identify
EEG signal of epileptic patients, Kannathal et al. (2005) distinguished between
correlation dimension (CD), largest Lyapunov exponent (LLE), Hurst exponent
(H), and entropy. For seizure detection Nigam and Graupe (2004) made use of
LAMSTAR artificial neural network method. Guler et al. (2005) used Lyapunov
exponents trained with Levenberg–Marquardt algorithm on EEG signals of epileptic
patients to compute the classification precision of recurrent neural networks (RNNs).
Spatiotemporal analysis method, wavelet feature extraction method in combination
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with expert model, and wavelet-based similarity analysis method were used by
researchers for predicting epileptic seizures (Winterhalder et al. 2006; Subasi
2007; Ouyang et al. 2007; He et al. 2007). Several other works have been reported
where EEG signals have been analyzed in different physiological states (during
sleep, awake, through meditation state) of healthy persons and diseased groups
including depression, bipolar disorders, Alzheimer’s disease, and schizophrenia
(Röschke et al. 1995; Fell et al. 2000; Jeongn 2002; Kannathal et al. 2004;
Susmakova 2004; Lutz et al. 2004). Among other neurological disorders like
Alzheimer’s, schizophrenia, and Parkinson’s, epilepsy has earned major attention
as it the most acquired (Navarro et al. 2002; Winterhalder et al. 2003; D’Alessandro
et al. 2005; Schelter et al. 2006; Mormann et al. 2007). If the degree of severity of
epileptogenic EEG signals can be understood properly, detection and proper medical
cure of epilepsy can be sort for (Ghosh et al. 2014). Litt and Echauz (2002)
hypothesized that using methods in time and frequency domain and non-linear and
delays methods, different results will be reported. Chaotic assessments such as
Lyapunov exponent and fractal dimension (Das et al. 2002); statistical and dynamic
non-stationarity analysis (Dikanev et al. 2005); Rényi entropy (Kulish et al. 2006);
dynamical similarity index, correlation dimension, and accumulated energy incre-
ments (Maiwald et al. 2004); and phase synchronization (Mormann et al. 2003) are
some of the other studies conducted to perceive seizure and cultivate a method for
prognosis which can be used clinically (López et al. 2009). To classify EEG data of
control and epileptic patients, Meghdadi et al. (2008) used a fractal dimension-based
technique. Intracranial invasive EEG records reported significantly lower values of
correlation fractal dimension in contrast to noninvasive scalp records. Reduced value
of correlation dimension was reported for epileptic EEG compared to healthy EEG.
Multifractal analysis of the EEG data using the Rényi fractal dimension spectrum too
recorded low values and variability in spectrum for seizure activity compared to
normal brain activity. Easwaramoorthy and Uthayakumar (2010) designed
Advanced form of Generalized Fractal Dimension (GFD) which is a multifractal
analysis technique to differentiate between control and ictal EEG. Kamath (2015)
examined EEG data from healthy and epilepsy patients using two methods, namely,
central tendency measure (CTM) and Higuchi fractal dimension (HFD). CTM
quantified degree of variability and HFD complexity. The study suggests that
differences exist in the ability to generate random time series between normal and
epileptic subjects and between seizure-free and seizure states.

Zhang et al. (2015) analyzed both interictal EEG and ictal EEG using multifractal
method. Varied multifractal features differentiated between interictal and ictal
phases. Authors also applied relevance vector machine (RVM) for classifying
EEG signals. To enhance the procedure’s performance on EEG data with epoch-
based and event-based estimation techniques, high sensitivity and specificity were
achieved. The authors also argued that in event-based performance assessment, a
sensitivity of 92.06% with a false detection rate of 0.34/h was obtained.
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2.2.2 Alzheimer’s Disease

With average life span of human beings being increased over the years, the number
of people suffering from Alzheimer’s disease (AD) and other forms of dementia has
risen considerably. Alzheimer’s is a slow and escalating neurodegenerative disorder
which causes change in the psychological, behavioral, and functional domain (Ruiz-
Gómez et al. 2018). Prevalence of the disease inflates exponentially with age,
affecting 1% in the age group of 60 and up to 38% over 85 years (Alzheimer’s
Association 2017). As Alzheimer’s has turned into modern epidemic efforts to
explore the underlying brain dynamics has been much researched for. Though
current medical care including some therapies are not adequate to treat AD or mild
cognitive impairment (MCI), however identification of the problems at an early stage
of dementia is significant (Lin and Neumann 2013). Different neuroimaging tech-
niques such as functional magnetic resonance imaging (fMRI), PET, magnetic
resonance spectroscopy, EEG, and magnetoencephalography (MEG) (Ewers et al.
2011) are used in differentiating AD subjects from healthy controls. PET and fMRI
offer precise results with limited temporal resolution, while EEG and MEG show
high temporal resolution, which allows to study the dynamics of complex brain
function (Poza et al. 2014). EEG due to low cost, portability and availability is used
mostly. Moreover several EEG studies showed its usefulness in characterizing brain
dynamics in AD and MCI (Stam 2005; Abásolo et al. 2006; Woon et al. 2007;
Gasser et al. 2008; Baker et al. 2008; Hornero et al. 2009; Fernández et al. 2010;
Poza et al. 2014). Research using spectral analysis techniques have been traditionally
used (Ruiz-Gómez et al. 2018) to detect abnormalities associated with EEG signals
obtained from AD and MCI patients (Gasser et al. 2008; Baker et al. 2008). With
advent of non-linear analysis techniques, work using these techniques has given
information complementary to spectral measures (Stam 2005). Studies suggest more
normal EEG activity of patients with AD and MCI in contrast to healthy subjects
(Woon et al. 2007; Baker et al. 2008) inferring loss of complexity and indication of
disease. Some authors have also reported that with progress in the disease, there is
decrease in variability and complexity as well (Abásolo et al. 2006; Hornero et al.
2009; Fernández et al. 2010; Poza et al. 2014). Ruiz-Gómez et al. (2018) in a recent
study determined the capability of a method to diagnose EEG using logistic dis-
criminant analysis (LDA), quadratic discriminant analysis (QDA), and multilayer
perceptron neural network (MLP). Their methodology was based on both spectral
and non-linear features.

Early in 2001, Nagao et al. (2001) introduced a three-dimensional fractal analysis
(3D-FA) to determine the spatial heterogeneity of cerebral blood flow (CBF) distri-
bution of single-photon emission computed tomography (SPECT) images in
AD. They found comparable difference in values of fractal dimension between
control and AD group.

They thus concluded that 3D-FA may be a beneficial tool for objectively deter-
mining the advancement of AD. Magnetoencephalogram (MEG) is another nonin-
vasive medical imaging technology which detects the activity of the brain by
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measuring the magnetic field produced due to electric current flowing within the
neurons (Alberdi et al. 2016). Like EEG it is also an important diagnostic tool for
measuring brain signals. Gómez et al. (2009a) used MEG signals for diagnosis of
AD. Using different methods like sample entropy (SampEn), Lempel-Ziv complex-
ity (LZC) (Gómez et al. 2009a; Gómez and Hornero 2010), Shannon spectral
entropy (SSE), approximate entropy (ApEn), Higuchi’s fractal dimension (HFD)
(Gómez et al. 2009b), Maragos and Sun’s fractal dimension (MSFD), and cross-
approximate entropy (CrossApEn) (Gómez et al. 2012), different MEG characteris-
tics have been determined which can compare AD and healthy subjects. With the
above methods, it was concluded that MEG signals had the ability to distinguish
between healthy and diseased subjects with high degree of accuracy. However
according to Alberdi et al. (2016) when MCI group was considered, no research
has analyzed such high accuracy which could be interesting for predicting AD and
ability of MEG signals to detect an initial stage.

Huang-Jing et al. (2015) developed 3D box-counting multifractal analysis
(BCMA) and proposed a modified integer ratio-based BCMA (IRBCMA) algorithm
too, to study the multifractality of white matter structural changes on 3D MRI
volumes between normal aging and early AD. The mutifractal features obtained
helped to distinguish AD patients from normal subjects. They opined that IRBCMA
algorithm can serve as a more appropriate substitute for 3D volume analysis. The
authors recommended the importance of multifractal analysis which can provide
explanation about the anatomy of AD by determining the structural changes in white
matter (Huang-Jing et al. 2015). Ni et al. (2016) used a multifractal-based approach
for studying resting state functional MRI (rs-fMRI) to see whether multifractal
features can sufficiently discriminate between healthy and AD and if a combination
of multifractal features and other traditional features enhance categorization of
AD. Support vector machines and multiple kernel learning (MKL) techniques
were used for classification purpose. When multifractal feature (Δf ) were combined
with monofractal feature using MKL classification, accuracy was found to increase
from 69% to 76%. They also opined that with the inclusion of other multifractal
features, traditional-feature-based AD classification could be improved.

Since Alzheimer’s disease induces functional disconnection between different
regions of the brain, some studies have concentrated to determine synchronous
changes among pairs of EEG signals (Houmani et al. 2018). To detect the synchro-
nous activity of EEG signals, different methods like correlation coefficient (Dauwels
et al. 2010), coherence (Dauwels et al. 2010; Escudero et al. 2011; Sankari et al.
2012), Granger causality (Dauwels et al. 2010; Babiloni et al. 2009), phase syn-
chrony (Dauwels et al. 2010; Czigler et al. 2008; Park et al. 2008), state space-based
synchrony (Dauwels et al. 2010; Czigler et al. 2008; Kramer et al. 2007), stochastic
event synchrony (Park et al. 2008; Dauwels et al. 2009a, b, 2010; Sankari et al.
2012), and mutual information (Jeong et al. 2001) have been developed. MCI and
AD subjects reported reduced EEG synchronies in comparison to healthy controls in
all these studies (Houmani et al. 2018). In a recent study, Houmani et al. (2018)
performed automated EEG diagnosis on cognitive impairment (SCI) patients, MCI
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patients, possible AD patients, and patients with vascular dementia, psychosis, Lewy
body dementia, and non-neurodegenerative disorders (alcoholism, cerebral vasculi-
tis, cerebellar abscess, etc.). They showed epoch-based entropy (a measure of signal
complexity) and bump modeling (a measure of synchrony) can efficiently discrim-
inate among the groups with high accuracy.

All these studies motivated us to perform EEG signal classification using a latest
state-of-the-art methodology in the domain of non-linear dynamics. To further
extend our understanding of the complex bioelectrical EEG signal, we also
performed a cross-correlation study on patients in different states of epilepsy.

2.2.3 EEG Data

The data for the work is obtained from the EEG database made available online by
Dr. Ralph Andrzejak et al. (2001) with the Clinic of Epileptology of the University
Hospital of Bonn, Germany. The details of the data and data selection procedure are
obtained from Andrzejak et al. (2001) [data available online at (www.meb.unibonn.
de/epileptologie/science/physik/eegdata.html]. The EEG data consists of five data
sets (denoted A–E) each containing 100 single-channel EEG segments of 23.6 s
duration. These segments were selected and cut out from continuous multichannel
EEG recordings after visual inspection for artifacts, e.g., due to muscle activity or
eye movements.

A brief description of the sets is given below:

1. Set A: Extracranial recording of healthy subject with open eyes
2. Set B: Extracranial recording of healthy subject with closed eyes
3. Set C: Intracranial recordings in seizure-free interval from the hippocampal

formation of the opposite hemisphere of the brain of patients
4. Set D: Intracranial recordings in seizure-free interval from within epileptogenic

zone of patients
5. Set E: Seizure activity of patients

The segments selected here were recorded from positions demonstrating seizure.
To record the EEG signals, 128-channel amplifier system was used. The data were
written onto the disk of a data acquisition computer system after 12-bit analog-to-
digital conversion, at a sampling rate of 173.61 Hz. Band-pass filter settings were
0.53–40 Hz (12 dB/oct) (Andrzejak et al. 2001).

Figures 2.1a, 2.1b, 2.1c, 2.1d, and 2.1e depicts a particular signal from each of the
sets (A–E) for 2 s. It is to be noted that we have modified the x-axis of the Figs. 2.1a,
2.1b, 2.1c, 2.1d, and 2.1e without showing the exact time since the information about
the amount of time delay is not known to us.
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Fig. 2.1a Plot of a typical signal for set A for 2 s

Fig. 2.1b Plot of a typical signal for set B for 2 s
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Fig. 2.1c Plot of a typical signal for set C for 2 s

Fig. 2.1d Plot of a typical signal for set D for 2 s
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2.3 Multifractal Detrended Fluctuation Analysis of EEG
Signals

Due to the spontaneous electrical activity, EEG recorded from the human brain has
huge fluctuations. Since the Weierstrass function (Falconer 2003) (everywhere
continuous but nowhere differentiable function) characterizes the biomedical wave-
forms and complex signals, EEG signals are represented as fractal time series
(Uthayakumar and Easwaramoorthy 2013). Fractal geometry can be used to analyze
EEG from epileptic patients to determine where the epileptogenic region is located,
so that a surgery of the epileptic patient can be done (Morales-Matamoros et al.
2009). Osorio and Frei (2007) and Weiss et al. (2008a, b) have also suggested that
fractal analysis of intracranial EEG signals can be used in epilepsy research for
detection and prediction of focal seizures.

In 2012 Serletis et al. (2012) investigated properties of complexity and
multifractality of the activity of neurons in the background during transitions from
healthy to epileptic state. The neuronal activities were recorded at the intracellular
and local network scales. Reduced complexity and multifractal features were noted
for a transition to the epileptic state. Pathology of the degree of multifractality is
found to collapse in epileptic state. Thus the authors concluded that the background
neuronal activity can adequately acquire complex multifractal features that partially
can detect and determine transitions of the brain from healthy to epileptic phase
(Serletis et al. 2012). Presence of long-term correlations within the human EEG
signals (Parish et al. 2004) has been reported by many investigators which is a fractal

Fig. 2.1e Plot of a typical signal for set E for 2 s
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characteristic associated with self-similar fluctuations (Nikulin and Brismar 2005).
However, neural systems, which interact through feedback of different components,
show non-equilibrium, variable fractal behaviors, multifractal (Freeman and Vitiello
2006), and their fractal characteristics can be described by traditional fractal
methods, such as detrended fluctuation analysis (DFA) and multiscale entropy
(MSE) (Li et al. 2008). In such a situation multifractal analysis is a reliable and
relevant method for assessing the fractal characteristics of EEG signals.

Since in traditional non-linear analysis methods like correlation dimension,
Lyapunov exponent, approximate entropy, and detrended fluctuation analysis, a
single parameter is used, they are insufficient to describe the extremely complex
behavior of EEG signals completely. So here we have used a methodology termed
multifractal detrended fluctuation analysis (MF-DFA) proposed by Kantelhardt et al.
(2002) to study the EEG pattern of normal and epileptic patients. The method has
previously been used for analyzing EEG pattern in human and other animals
(Figliola 2007; Dojnow 2007; Dutta 2010a).

Using the MF-DFA methodology proposed by Kantelhardt et al. (2002), we have
analyzed EEG patterns in healthy and epileptic group. Sets A and B are recordings of
normal subjects while sets C, D, and E are EEG records of epileptic patients obtained
from an archive of presurgical diagnosis. EEGs of five patients were chosen. All
patients had attained complete seizure control after surgery of one of the hippocam-
pal formations which was correctly diagnosed to be the epileptogenic zone. Set C are
records of EEG data from hippocampal formation of the opposite hemisphere of the
brain of patients in a seizure-free interval while set D corresponds to the EEG data of
the epileptogenic zone in a seizure-free interval and set E consists data of seizure
activity of patients (Andrzejak et al. 2001).

All the data sets A to E were first changed to obtain the integrated signal
according to the MF-DFA algorithm and then the corresponding fluctuation func-
tions Fq(s) were determined. The scaling properties of the fluctuation function for a
particular signal for different orders of q are depicted in Fig. 2.2. Linear dependence
of the fluctuation function (ln Fq on ln s) is observed indicating scaling behavior.
The slope of the linear fit of ln Fq(s) vs. ln s plots gives the values of generalized
Hurst exponents h(q). A plot of the Hurst exponent against the order q(h(q) vs. q) is
depicted in Fig. 2.3a. It shows variation of h(q) vs. q for a particular set which reveals
multifractal behavior as for a monofractal series h(q) is independent of q. We also
estimated the classical scaling exponent τ(q). Variation of τ(q) with q is shown in
Fig. 2.3b. From the plot we observe non-linear dependence of τ(q) on q indicating
multifractal nature of the scaling properties as for monofractal scaling τ(q) depends
linearly on q. Next the singularity strength α and dimension of the subset series f(α)
are calculated and their variation known as the multifractal spectrum is shown in
Fig. 2.3c (Dutta et al. 2014). By fitting a quadratic function using least square
method, the multifractal spectrum can be determined quantitatively (Figliola et al.
2007) around the neighborhood of maximum. Table 2.1 depicts the values of mean
multifractal width (w) and variance for each set. The distribution of the values of
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multifractal width is shown in Fig. 2.4. Since the sample size is quite large, the
inference drawn from the results is reasonably significant and the difference in
means is also relevant statistically (Dutta et al. 2014). We employed ANOVA
(Freund’s 2003) to find the statistical significance of results. The means are found
to be significantly different even at 99% confidence level.

To determine multifractality origin, we shuffled all the series randomly and then
analyzed them following the same procedure as for the original series. In the
shuffling procedure, all correlations are disturbed. For the shuffled series too, we
estimated values of Hurst exponent h(q), classical scaling exponent τ(q), and
multifractal widths. For comparison with original series, the variation of h
(q) vs. q, τ(q) vs. q, and f(α) vs. α for the shuffled series are also shown in
Figs. 2.3a, 2.3b, and 2.3c, respectively. Weaker multifractality is observed for the
randomly shuffled series indicating that the origin of multifractality is due to both
long-range correlations and broad probability distribution. Ideally for a sufficiently
long series, the shuffled series should have monofractal properties with a value of
Holder exponent α, close to 0.5. Figure 2.3c shows that for the shuffled series, f
(α) vs. α has a peak at α0 (value of α at q ¼ 0) close to 0.5. Ideally f(α) should be
independent of α. In this case the series is comparatively short (Dutta et al. 2014). It
was reported by Drożdż et al. (2009) that a relatively short series may disclose traces
of multifractality; however the results systematically and steadily approach toward
monofractal behavior with the increase in number of data points.

Fig. 2.2 Plot of ln Fq vs. ln s for a particular signal (Dutta et al. 2014)
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Fig. 2.3a Plot of H
(q) vs. q for a particular
signal and its corresponding
randomly shuffled series
(Dutta et al. 2014)

Fig. 2.3b Plot of
τ(q) vs. q for a particular
signal and its corresponding
randomly shuffled series
(Dutta et al. 2014)
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We can draw the following inferences from the values obtained in Table 2.1:

1. The values clearly indicate that the multifractal widths of EEG patterns of the
brain are significantly different for extracranial (set A, B) and intracranial record-
ings (set C, D, E). The results obtained for different physiological states (eyes
open and closed) and pathological states (normal and epileptic patients) are also
found to be considerably different (Dutta et al. 2014).

2. Multifractal widths of normal patients with eyes open and closed are significantly
different. The multifractal width seems to increase with closed eyes (Dutta et al.
2014). As suggested by Andrzejak et al. (2001), the closing of eyes might impose
a constraint in the dynamics resulting in physiological alpha rhythm. Alpha
waves are reduced with open eyes, drowsiness, and sleep which might lead to
the increase of multifractal width for closing of eyes as observed in our case. For

Fig. 2.3c Plot of f(α) vs. α for a particular signal and its corresponding randomly shuffled series
(Dutta et al. 2014)

Table 2.1 Mean values of
multifractal width and
variance for the sets A–E
(Dutta et al. 2014)

Set Mean width Variance

A 0.605 0.008

B 0.74 0.01

C 0.80 0.01

D 0.92 0.03

E 1.19 0.07
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closed eyes Stam et al. (1996) have observed low values of correlation dimension
D2, compared to eyes open and eyes closed with mental arithmetic. Jelles et al.
(1999) have also observed an increase in value of D2 for activation like opening
of eyes and arithmetic. In accordance with the previous studies, we have also
observed a clear distinction of multifractal parameters for eyes open and closed
(Dutta et al. 2014).

3. Now considering the pathological states of the brain, we can see significant
difference in the values of multifractal width for normal healthy people and
diseased sets (Dutta et al. 2014). Data of set C is obtained from the hippocampal
formation on the opposite hemisphere of the brain thus C does not lay in
epileptogenic zone. Even though C does not lie in epileptogenic zone, the mean
value of multifractal width w is different from that of A or B. Data of sets A and B
corresponds to extracranial recording while C to intracranial recording (Dutta
et al. 2014) may be the cause of different values of multifractal width. Andrzejak
et al. (2001) have explained the possible reasons for the difference in multifractal
widths of sets A and C. They have explained that for intracranial recordings fewer
neurons contribute to measured potentials and the data are also less filtered
compared to the extracranial locations. Further they have also highlighted the
fact that though C does not lie directly in the epileptogenic zone, it may partic-
ipate in secondary non-autonomous processes generated by the
epileptogenic zone.

Fig. 2.4 Distribution of values of the multifractal width W for sets A–E (Dutta et al. 2014)
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4. Data of set D which is recorded in seizure-free interval from the epileptogenic
zone also has a higher degree of multifractality compared to set C. Thus
the MFDFA method can be very effective in detection of the epileptogenic
zone of the brain. A resection of the epileptogenic zone can result in complete
cure of the patient. We finally observe that the EEG recording for seizure activity,
i.e., set E, shows the highest degree of multifractality compared to all other sets
(Dutta et al. 2014).

It is also worth mentioning that the multifractal width varies “significantly” for
different physiological and pathological cases. Compared to the control group, a
complex pattern is observed in case of the diseased set. Earlier investigations carried
out on cardiac systems as well as EEG patterns of rats (Ivanov et al. 1999, 2001,
2009; Bartsch et al. 2005; Dutta 2010a, b) healthy subjects showed higher degree of
multifractality in contrast to our case, though the comparison is more meaningful in
similar systems as the underlying processes for heart rate variations and brain
functions are not similar. The human brain is a more complex system than the
cardiac system, and in an epileptic seizure, the human brain produces huge spikes
and shows large fluctuations compared to the normal brain. Since the sample size in
the work of Dutta et al. (2010a) is small compared to the present case, hence different
results were observed.

Thus the study reveals very interesting results. Bashan et al. (2008) have noticed
that MFDFA1 consistently inflates the scaling exponents for small scale, ‘s’.
Another method called centered moving average (CMA) proposed by Alvarez-
Ramirez et al. (2005) can be more effective in determining the scaling properties
in short time series without trends. However by applying standard DFA method for
data with possible unknown trends with several different detrending polynomial
orders will be helpful in distinguishing real crossovers and artificial crossovers due
to trends. Another problem arises when the correlation properties of real data cannot
be identified where a large amount of data is missing or removed due to artifacts. Ma
et al. (2010) observed that even extreme loss of data up to 90% does not significantly
affect the global scaling behavior of positively correlated signals, but the
anticorrelated signals significantly change their scaling behavior even if only 10%
of the data are removed. The change is more for a lower value of the scaling
exponent. Xu et al. (2011) have also studied how coarse-graining methods affect
the scaling properties of long-range correlated and anticorrelated signals which are
quantified using the DFA method. Coarse-graining methods strongly affect
anticorrelated signals, whereas they have a much weaker effect on the scaling
behavior of positively correlated signals. There are also chances of spurious
multifractality as discussed by Ludescher et al. (2011). In the case of physiological
signals, they have observed the artifacts that create a problem in detecting long-range
correlations and hence multifractality is the additive random noise. Additive noise
scarcely results in any spurious multifractality in case of monofractal records. Errors
can be observed in values of h(q) for q < 2 for moderate additions of noise, whereas
for q > 2 no significant change is observed. But in case of multifractal records,
multifractality is highly reduced with the increase in white noise leading to almost
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monofractal trends. In our study we have obtained large values of the multifractal
width for almost all cases which is an indication of strong degree of multifractality.
Thus any trends have hardly affected the data. Moreover we have analyzed 100 sig-
nals in each case, so the large sample size is expected to give true results when the
mean is computed. Epilepsy is a serious neurological disorder which affects a
considerable percentage of the human population; therefore the present investigation
provides very significant and useful new data which would help in proper diagnosis
and treatment of the patient and in complete cure of the patient (Dutta et al. 2014).

2.4 Multifractal Detrended Cross-Correlation Analysis
of EEG Signals

With the introduction of multifractal detrended cross-correlation analysis
(MF-DXA) by Zhou (2008), the multifractal features of two cross-correlated signals
and higher-dimensional multifractal measures could be described. For more than
20 years, several researchers have applied the cross-correlation technique to study
EEG as one of more conventional analysis tools as compared to newer tools (Jerger
et al. 2001). Cross-correlation was used by Mars and Lopes da Silva (1983) for
determining the location of epileptogenic foci. Lopes da Silva et al. (1989) investi-
gated the interdependence of EEG signals, Harris et al. (1994) estimated time delays
between channels, and Mann et al. (1993) characterized dynamic properties of sleep
EEG using cross-correlation. Zhao et al. (2013) applied DXA to analyze different
physiological and pathological states of epilepsy EEG signals and found the DXA
values of epilepsy patients’ EEG signals increased compared to the normal subjects’
EEG signals which can help in medical diagnosis and treatment. Jun and Da-Qing
(2012) also used the DXA to study the EEG of healthy young and old subjects and
found the cross-correlation between different leads of a healthy young subject was
larger than that of a healthy old subject. They also showed the cross-correlation
relationship to decrease with age. Bob et al. (2010) found cross-correlations between
pairs of EEG time series to be inversely related to dissociative symptoms (psycho-
metric measures) in 58 patients with paranoid schizophrenia (Timasheva et al. 2012,
Ghosh et al. 2014).

In our work we studied the cross-correlation of EEG signals in epileptic patients
during seizure and in seizure-free interval using MF-DXA methodology. MF-DXA
is used with high degree of success in the investigation of complex signals produced
by real biological systems. It is a very rigorous and robust tool for assessment of
cross-correlation among two non-linear time series – in this case among seizure and
seizure-free intervals for epileptic patients (Ghosh et al. 2014). A brief description of
the data is given in Sect. 2.2. In the present study, we have performed cross-
correlation analysis among sets C, D, and E.
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Like in MF-DFA analysis here also the integrated time series was divided into Ns
segments [Ns ¼ int(N/s)], N being the length of the series. With increment in the
value of q from ¼ �10 to +10, the fluctuation function for both auto-correlated and
cross-correlated series was determined. For all values of q, power–law scaling of
fluctuation function with scale s was observed. The slope of linear fit to log Fxyq
(s) vs. log s plots gives the values of λ(q). The plot of log Fxq(s) and Fyq(s) vs. log
s for the auto-correlation (MF-DFA) and log Fxyq(s) for cross-correlation
(MF-DXA) fluctuation functions of set C and E and set D and E for q ¼ 2 for a
particular signal is depicted in Figs. 2.5a and 2.5b. The linear nature of all the curves
suggests that there exist power–law cross-correlations. The values of h(q ¼ 2) and
λ(q ¼ 2) are provided in Tables 2.2 and 2.3, respectively. The relation where cross-
correlation scaling exponent λ(q) is average of the Hurst exponent h(q) of individual
series is observed to be valid in all the cases. The mean values of auto-correlation (γ)
are provided in Table 2.2 and the mean values of cross-correlation (γx) for the set CE
and set DE are presented in Table 2.3 (Ghosh et al. 2014).

Figures 2.6a and 2.6b depicts the relationship between the cross-correlation
scaling exponent λ(q) and q for each of the sets CE and DE. For comparison
(in the same Figs. 2.6a and 2.6b), we have plotted the values of generalized Hurst
exponent h(q) of the sets C, D, and E estimated by means of MF-DFA. From the
plots we can see that the relationships are multifractal because for different q, there
are different exponents; that is, for different q, there are different power–law cross-
correlations. Figures 2.6a and 2.6b also shows that for q ¼ 2, the cross-correlation
scaling exponent λ(q) for both the sets CE and DE is greater than 0.5 which means
that long-range cross-correlation and persistent properties exist in all the sets (Ghosh
et al. 2014) (Figs. 2.6a and 2.6b).

Another evidence of multifractality is shown by the non-linear dependence of the
classical multifractal scaling exponent τ(q) on q which is depicted in Figs. 2.7a and
2.7b, respectively. Further from Fig. 2.8a we can see that the multifractal width of
the cross-correlation signal CE is smaller than the multifractal width of the individ-
ual set C and set E. Similarly from Fig. 2.8b also we can see that the multifractal
width of the cross-correlation signal of set DE is smaller than the multifractal width
of the individual set D and set E (Ghosh et al. 2014).

We have mentioned before in Sect. 1.5.1 that the lower value of γ is an indication
of higher degree of auto-correlation. Negative value of the auto-correlation γ for set
C the data of which are recorded from the hippocampal formation of the opposite
hemisphere of the brain in seizure-free interval can be observed from Table 2.2.
Drożdż et al. (2009) have also observed negative values of auto-correlation. We
further see from Table 2.2 that the degree of auto-correlation γ is least for patients
with seizure activity, i.e., for set E (Ghosh et al. 2014).

Table 2.3 shows the degree of cross-correlation γx to be the least in set DE where
the data of D are recorded from the epileptogenic zone and E from seizure activity of
patients. We further observe that the degree of cross-correlation γx shows a similar
pattern of variation as the degree of multifractality or the scaling exponent λ(q),
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Fig. 2.5a Plot of log Fq vs. log s (q¼ 2) of individual and cross-correlated signal for a particular set
of C and E (Ghosh et al. 2014)

Fig. 2.5b Plot of log Fq vs. log s (q ¼ 2) of individual and cross-correlated signal for a particular
set of D and E (Ghosh et al. 2014)



Fig. 2.6a Plot of λ(q), h(q) vs. q for a particular signal of set C and E (Ghosh et al. 2014)

Fig. 2.6b Plot of λ(q), h(q) vs. q for a particular signal of set D and E (Ghosh et al. 2014)



Fig. 2.7a Plot of τq vs. q of individual and cross-correlated signal for a particular set of C and E
(Ghosh et al. 2014)

Fig. 2.7b Plot of τq vs. q of individual and cross-correlated signal for a particular set of D and E
(Ghosh et al. 2014)



Fig. 2.8a Plot of f(α) vs. α of individual and cross-correlated signal for a particular set of C and E
(Ghosh et al. 2014)

Fig. 2.8b Plot of f(α) vs. α of individual and cross-correlated signal for a particular set of D and E
(Ghosh et al. 2014)



because with decrease in degree of multifractality, the degree of cross-correlation
also decreases. Looking at the values of multifractal width (w and wx)
from Tables 2.2 and 2.3, we can observe that the widths of cross-correlation
multifractal spectra are narrower than those of separately analyzed sets C, D, and
E (Ghosh et al. 2014).

It deserves mentioning that in this investigation the cross-correlation is performed
on data sets that are not simultaneous due to the obvious time delay involved which
is beyond ones control since this is due to particular features of the data sets.
However this cross-correlation study is expected to convey the required information
about the correlation (Ghosh et al. 2014).

Thus from the present analysis of EEG signals of epileptic patients using
MF-DXA method, we can see that EEG signal during seizure and in seizure-free
interval exhibits a power–law cross-correlated behavior. The values of Hurst expo-
nent h(q ¼ 2) and scaling exponent λ(q ¼ 2) are an indication of persistent long-
range auto- and cross-correlation of the EEG signals. We also observe that among
“seizure” and “seizure-free interval,” the cross-correlation has larger value in case of
epileptogenic zone of the brain. The data is new and important in understanding the
dynamics of the disease as well as modeling purpose. The present analysis also
suggests to perform similar cross-correlation analysis considering more number of
leads as far as practicable which will enrich knowledge for proper diagnosis and
prognosis of the disease (Ghosh et al. 2014).

2.5 Possible Application as Biomarker of Epilepsy

As evidenced from this analysis, it is highly effective for diagnosis of the epilepto-
genic zone. It is needless to mention that this diagnosis is very essential for surgical
procedures because the removal of the epileptogenic zone can result in complete cure
of the patient. It is also worth mentioning that the multifractal width varies “signif-
icantly” for different physiological and pathological cases. Compared to the control
group, a complex pattern, assessed with the help of a quantitative parameter, is
observed in case of the diseased set. It may be mentioned that in some cases with the
conventional technique of assessment of epilepsy with EEG, diagnosis is difficult.
On the contrary this method of high precision can not only diagnose epilepsy, but it

Table 2.2 Mean values of h,
γ, and W for sets C, D, and E
(Ghosh et al. 2014)

Set Avg h(q ¼ 2) Avg γ(q ¼ 2) Avg W

C 1.016 �0.032 0.80

D 0.951 0.095 0.920

E 0.586 0.829 1.190

Table 2.3 Mean values of λ,
γx, and W for sets CE and DE
(Ghosh et al. 2014)

Set Avg λ(q ¼ 2) Avg γx(q ¼ 2) Avg W

CE 0.811 0.377 0.436

DE 0.789 0.422 0.798
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tells about epileptogenic zone also with simple parameters. Thus a software can
easily be developed which can be attached with the EEG system, and eventually this
coupled system will be very much effective as so-called biomarker.
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Chapter 3
Multifractal Approach for Quantification
of Autonomic Deregulation Due to Epileptic
Seizure with ECG Data

Abstract Since the autonomic function affecting the sympathetic, parasympathetic
nervous system changes due to epileptic seizure, the corresponding changes in
cardiac signals may be effectively used as potential biomarker providing an
extracerebral indicator of ictal onset in some cases. Patients suffering from epilepsy
may experience serious cardiac malfunctions leading to sudden unexpected death
(SUDEP). Thus the heart rate fluctuations during seizure are non-linear and
extremely complex. This chapter presents a report on the analysis of ECG signals
of postictal patients using a modern and rigorous chaos-based non-linear technique.

3.1 Introduction

During epilepsy a change in functioning of the cardiac system implies stimulation in
the central autonomic network. When a subject encounters seizure, epileptic dis-
charges transmit to the central autonomic network leading to change in normal
autonomic control of important cardiac activities. This activation of central auto-
nomic nervous system is the reason behind the peri-ictal autonomic cardiac syn-
drome seen in epileptic patients. The significance of these autonomic features and
the associated complications has been understood clearly in the last few years
(Baumgartner et al. 2001; Fogarasi et al. 2006; Widdess-Walsh et al. 2007; Janszky
et al. 2007). Thus changes in the pattern of cardiac dynamics in the pre-ictal and ictal
stage can act as prospective biomarkers which can be used to develop algorithms to
predict seizures (Jensen and Lagae 2010).

Most of the epileptic patients who have suffered sudden unexpected death in
epilepsy (SUDEP) have encountered a seizure prior to death (Langan et al. 2000).
This has led to the surge of a relationship between seizure and death. An increase in
heart rate has been noticed in adults and children with complex partial and gener-
alized tonic–clonic seizures (Marshall et al. 1983; Blumhardt et al. 1986; Smith et al.
1989; Mayer et al. 2004). Blumhardt et al. (1986) reported dominant increase in
heart rate of patients with temporal lope seizures. Smith et al. (1989) reported that
during the inception of seizure, an initial steep rise is noted in the heart rate of the
patients accompanied by distinct variations during the seizure and postictally in a
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group of patients with complex partial seizures. They also observed similar changes
in pattern of heart rate during and after seizure in the same patient which indicates
that similar type of autonomic stimulation happened as a standard development in
those individuals. In another study Keilson et al. (1989) observed ictal tachycardia of
greater than 100 beats per minute in lateralized and generalized seizure patients. Ictal
tachycardia in adults patients with refractory temporal lobe seizures have been
reported in other studies also (Galimberti et al. 1996; Schernthaner et al. 1999;
Garcia et al. 2001; Di Gennaro et al. 2004; Moseley et al. 2011). In comparison to
tachycardias (heart rate greater than 100 beats per minute), seizure-related slow
asystole and bradycardia (heart rate slower than 60 beats per minute) are less
common. An acute slowing of the heart rate giving rise to asystole and syncope is
known as ictal bradycardia (Britton et al. 2006). Nashef et al. (1996) reported that
ictal bradycardia occurred during respiratory changes, notably apnea, which implies
that cardiorespiratory reflexes play a vital role in initiating ictal bradycardia, whereas
Tinuper et al. (2001) reported that ictal bradycardia is not dependent on changes due
to respiration. Rocamora et al. (2003) reported ictal asystole in very few patients who
had undergone video-EEG monitoring. Studies of interictal state of epilepsy were
reported by many (Nei 2009).

3.2 Systematic Studies on Abnormalities in Cardiac
Autonomic Status

Heart rate and blood pressure assessment while deep breathing and Valsalva activity
demonstrates that the operations of the parasympathetic and sympathetic nervous
systems are diminished among patients with epilepsy, as compared to control sub-
jects (Isojarvi et al. 1998). Ansakorpi et al. (2000) reported prominent malfunction of
cardiovascular autonomic regulation in patients with refractory temporal lobe epi-
lepsy than those of well-controlled temporal lobe epilepsy patients. Ronkainen et al.
(2005) reported loss of heart rate variability and subdued circadian rhythm in
temporal lope epilepsy and also in controlled and in refractory patients too.
Sathyaprabha et al. (2006) measured heart rate and blood pressure at rest, after
Valsalva and during change of posture and found autonomic malfunction in patients
suffering from chronic refractory epilepsy when compared to control subjects. Their
study reported severe malfunction of the autonomic system for long-lasting epilepsy.
With the help of simple neurophysiologic tests like Valsalva, tilt table test, RR
interval, deep breathing, and sural nerve conductance, Chroni et al. (2008) were able
to show that the autonomous nervous system experienced a chronic effect of
epilepsy.

Some studies also identify decreased heart rate variability particularly in refrac-
tory epilepsy, which demonstrates that changes in the autonomic function may lead
to SUDEP (Massetani et al. 1997; Ansakorpi et al. 2002; Persson et al. 2005).
Compared to control epilepsy subjects, Hilz et al. (2002) reported diminished
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variability in the resting heart rate of subjects with SUDEP (Nei et al. 2007). Some
studies have also identified changes in autonomic function due to administration of
antiepileptic drugs (Isojarvi et al. 1998; Ansakorpi et al. 2000; Hennessy et al. 2001;
Daniellson et al. 2005).

With the advancement of computer technology, simultaneous recording of EEG
and ECG signals is now possible. Analysis of EEG signals in epileptic patients has
come a long way and several clinical and automated methods have been developed
till date. Traditionally electroencephalogram tests or brain scans are used to detect
epilepsy, but electrocardiogram tests which measure heart rate can also be used as a
potential diagnostic tool to detect epilepsy (Su et al. 2008).

Several studies have reported that during seizure along with changes in heart rate,
the configuration of the ECG also changes (Varon et al. 2013). For partial and
generalized seizures in pre-ictal phase, Zijlmans et al. (2002) reported anomaly in
ECG, like T wave inversion and ST elevation/depression. Leutmezer et al. (2003)
developed a new method for analyzing peri-ictal heart rate changes which enabled
them to access the dynamic changes in ECG during the transition period from
interictal to ictal state. Elmpt et al. (2006) modeled heart rate signal using curve-
fitting methodology to detect seizure onset from ECG signals. Wong et al. (2008)
investigated ECG signals in a seizure clinic and found a close cooperation between
cardiology and neurology. Amarnath (2010) used power spectral density (PSD)
technique to analyze ECG signals of postictal heart rate oscillations in partial
epilepsy. Surges (2010) showed shortening of QT interval during the early postictal
phase of refractory temporal lobe epilepsy patients (Ghosh et al. 2017). With a
motivation of extracting relevant important information, some other investigations
using ECG signals have been reported for both pre-ictal and postictal patients
(Naritoku et al. 2003; Sahin et al. 2009; Nilsen et al. 2010; Vanage et al. 2012;
Van der Lende et al. 2015). Jansen et al. (2013) reported changes in heart rate in
temporal lobe and frontal lobe seizures in childhood epilepsy. Varon et al. (2013)
proposed the necessity of developing an easy-to-use alarming system to improve the
quality of life of patients suffering from epileptic seizures from the respective
changes in heart rate during the pre-ictal, ictal, and postictal phases. The authors
used principal component analysis (PCA) to extract features describing the mor-
phology of the ECG signal. They opined that seizure affects the extracted features
which can identify when the configuration of ECG mainly that of the QRS-complex
is affected. Van der Kruijs et al. (2014) investigated the autonomic nervous system
functioning with epileptic seizures in pre-ictal time course of heart rate variability
(HRV). Kolsal et al. (2014) have reported a study on heart rate variability in children
with epilepsy to predict seizure (Ghosh et al. 2017). In another study Varon et al.
(2015) presented two different algorithms, namely, PCA and phase-rectifying signal
averaging (PRSA), for determining epileptic seizures from a single-lead ECG. While
PCA was shown to capture changes in the morphology of the QRS part in the ECG
signal, PRSA quantified the heart rate caused by an epileptic seizure. Qarage et al.
(2016) analyzed heart rate variability obtained from ECG employing matching
pursuit (MP) and Wigner–Ville distribution (WVD) algorithm to extract important
HRV features which can describe seizure and seizure-free status.
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ECG being easier to measure and its capacity to note changes in the heart rate
prior to onset of disturbances in EEG recordings, ECG is thought to have an in-built
superiority over EEG (Varon et al. 2013). But most of the ECG analysis techniques
are based on conventional time and frequency domain analysis considering linear
fluctuation of heart rate. These techniques are not appropriate to bring about the
minute changes in heart rate dynamics (Coenen et al. 1977; Fakhouri 1980; Dasheiff
and Dickinson 1986; Oppenheimer 2001; Berilgen et al. 2004; Lahmann et al. 2006;
Kamal 2006,2010; De Ferrari et al. 2009; Foldvary-Schaefer and Unnwongse 2011;
Meregnani et al. 2011; Zamponi et al. 2011) thus paving the path for introduction of
non-linear-based methods to describe complex heart rate dynamics and complement
traditional methods of its variability (Kamal 2014). Methods based on non-linear
dynamics such as fractal analysis and chaos theory have been introduced (Novak
2011; Previnaire et al. 2012; Moseley et al. 2013). These techniques have been
implemented on HR signals and have provided significant clinical information on
cardiac diseases (Woo et al. 1994; Brouwer et al. 1996; Huikuri et al. 1996;
Mäkikallio et al. 1996,1997; Ho et al. 1997) but have rarely been used on evaluation
of autonomic cardiovascular dysfunction in epilepsy (Ghosh et al. 2017).

The pioneer work of Goldberger (1996) introduced the concept of non-linear
dynamics in the field of cardiology. Non-linearity of the heart rhythm is an indicator
of a patient’s overall health. With increasingly sophisticated instruments though,
analysis of ECG signals has reached perfection over the years, but the question still
remains whether all relevant information contained within the signal can be extracted
just by visual inspection. So development of quantitative methods based on
non-linear dynamics has gained importance. If the patients’ health status can be
monitored correctly, then a prediction method can also be developed (Jovic and
Bogunovic 2010).

Long-term memory-like structures (Ghosh et al. 2017) are defined by frequency
(f) spectrum amplitudes leading to a scale-free power–law relationship of 1/f. Cardiac
time series is found to exhibit similar characteristics where the long-range correlations
indicate that the fluctuations on one scale are self-similar to those on other scales
(Stiedl et al. 2009). Assuming scaling properties of the cardiac time series to be
homogeneous throughout the entire signal (Peng et al. 1993,1995; Meyer et al. 1998a,
b; Meyer 2002; Meyer et al. 2003; Meyer and Stiedl 2003; Stiedl and Meyer 2003),
they were treated as monofractal signals. But later with advancement in analysis
techniques, it was revealed that a single scaling parameter is not sufficient to describe
the behavior of cardiac time series owing to its inhomogeneous and nonstationary
character which is a clear indication that heart rate fluctuations exhibit higher level of
multiscale complexity transcending 1/f characteristics (Stiedl et al. 2009). This led to
application of multi-exponent multifractal analysis on cardiac time series of healthy
controls, patients with cardiac disease, and also study of mice (Ivanov et al. 1999,
2004; Goldberger et al. 2002; Meyer et al. 2003; Meyer and Stiedl 2003, 2006; Stiedl
et al. 2004). Thus linear analysis techniques are inappropriate in quantifying dynam-
ics of heart rate given their statistical properties (Stiedl et al. 2009). Non-linear
techniques are advanced methods that improve risk cardiovascular stratification in
humans (Goldberger 1997; Goldberger et al. 2002; Meyer 2002; Meyer and Stiedl
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2003). Non-linear methods being scale-invariant present precise qualitative assess-
ment of heart rate dynamics in both physiological and pathological conditions (Stiedl
et al. 2009) with greater sensitivity which linear analyses fail to achieve (Rowan et al.
2007; Montano et al. 2008).

Non-linear and nonstationary character of EEG has been detailed in Chap. 2. Like
EEG, ECG signals are also non-linear and nonstationary (Fortrat et al. 1997; Thurner
et al. 1998; Pomfrett 1999; Sleight and Donovan 1999; Lin and Hughson 2001;
Bernaola et al. 2001; Lass 2002; Yoshikawa and Yasuda 2003). Ivanov et al. (1999)
reported healthy human interbeat intervals to exhibit multifractal properties. Amaral
et al. (2001) also reported the multifractal behavior of HRV. Wang et al. (2003) too
analyzed ECG signals of healthy young adult subjects and old ones and character-
ized their multifractality (Ghosh et al. 2017). Application of these non-linear tech-
niques in assessing dynamics of the cardiac system motivated us to apply a state-of-
the-art methodology to visualize brain function after seizure by studying ECG
signals of epileptic patients. An overview of our work is detailed in the following
section.

3.3 Multifractal Detrended Fluctuation Analysis of ECG
Signals

To provide a complete description of the complicated scaling behaviors of the time
series over multiple time scales, Kantelhardt et al. (2002) introduced multifractal
detrended fluctuation analysis (MF-DFA) to determine long-range dependence with
the crossover time scales. MF-DFA is a widely used methodology for studying
different heart diseases (Galaska et al. 2007, 2008; Makowiec et al. 2006, 2007).
Galaska et al. (2007) used wavelet transform modulus maxima (WTMM) and
MF-DFA to assess correlations between multifractal parameters of heart rate in a
group of healthy controls and patients with left ventricular malfunction. In another
work Galaska et al. (2008) used the same methodologies (WTMM and MF-DFA) to
provide a comparison of the multifractal parameters of heart rate in a group of
patients with reduced left ventricular systolic function (rlvs group) and in a group
of healthy persons. The width of the multifractal spectrum obtained using MF-DFA
was found to be notably reduced, and the Hurst exponent was remarkably higher in
rlvs group compared to healthy group both during daytime activity and nighttime
rest. Using WTMM width was lower only during diurnal activity. Thus the authors
opined MF-DFA to be more precise in contrast to WTMMmethod for differentiating
multifractal properties of the heart rate in control group and patients with left
ventricular systolic malfunction. Makowiec et al. (2007) also used WTMM and
MF-DFA to study the multifractal properties of power spectra in the low-frequency
(LF), very low-frequency (VLF), and ultra-low-frequency (ULF) range. They exam-
ined alterations in circadian rhythm for activities performed during the day and while
at rest in the night. Normal sinus rhythms during awake and sleep each of 5 h of
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healthy people were considered. In case of persistence in LF range, loss of heart rate
variability at night and also its increase in ULF in the presence of stochasticity are
proposed based on qualitative argument.

Wang et al. (2003) used a method developed by Chhabra and Jensen (1989) to
compute the multifractal spectrum of ECG signals in young and old subjects. They
found multifractal spectrum area in young group to be greater than the old subjects
and the logarithm of spectrum area to be inversely proportional with age. The
multifractal spectrum area was found to decrease distinctly for brain injury patients.
Thus they concluded that multifractal spectrum of ECG is mainly regulated by one’s
neuro-system. Multifractal spectrum area of men’s ECG contemplates the strength of
the body’s neuroautonomic control on the heart and the extent of heart failure. In old
people the impact of neuroautonomic control on the multifractal properties of ECG
seemed to be weak, and a decrease in multifractal spectrum was noted. Though both
MF-DFA and WTMM have been used in exploring several cardiac disorders, to the
best of our knowledge, application of MF-DFA to study ECG signals in epileptic
patients post seizure has not been reported. The application of MF-DFA methodol-
ogy on ECG patterns can help in understanding the changes that occur in heart rate
after patients have encountered seizure (Ghosh et al. 2017).

3.3.1 ECG Data

The data for our work which contains seven ECG time series was obtained from
“PhysioNet” (https://www.physionet.org/physiobank/database/szdb/) (Al-Aweel
et al. 1999). The data consists of 11 partial seizures recorded in 5 women patients,
aged between 31 and 48 years, lasting from 15–110 s during continuous EEG, ECG,
and video monitoring (Ives et al. 1996). Multiple seizures were recorded for two
subjects. The patients had no clinical evidence of cardiac disease and had partial
seizures with or without secondary generalization from frontal or temporal foci. The
recordings were made under a protocol which was approved by Beth Israel Deacon-
ess Medical Center’s (BIDMC) Committee on Clinical Investigations. “Data were
analyzed off-line using customized software. Onset and offset of seizures were
visually identified to the nearest 0.1 second by an experienced electroencephalogra-
pher (DLS) blinded with respect to the HRV analysis. Continuous single-lead ECG
signals were sampled at 200 Hz. From the digitized ECG recording, a heartbeat
annotation file (a list of the type and time of occurrence of each heartbeat) was
obtained using a version of commercially available arrhythmia analysis software”
developed by Ho et al. (1997).

The ECG time series of partial seizures recorded in five women patients were
analyzed with MF-DFA method. The mathematical details of the method are pro-
vided in Appendix A. According to MF-DFA algorithm, each of the time series was
first transformed to get the integrated signal which was then divided to Ns bins,
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where Ns ¼ int(N/s) (N length of the series, s length of the bin). The fluctuation
function Fq(s) was determined for q¼�10 to +10 (q is an index) in steps of 1, using
MATLAB code provided by Ihlen (2012). Figure 3.1 depicts plot of the fluctuation
of the integrated ECG signals against the length of the bin s (ln Fq(s) versus ln s).
Linear dependence of the fluctuation function can be observed which is an indication
of scaling behavior of the ECG time series. The values of Hurst exponent h(q) were
obtained from the slope of linear fit of ln Fq(s) versus ln s. We know that for a
monofractal series, there is only one value of h(q) for all values of q. If h(q) depends
on q, the series is multifractal. It has been shown by Kantelhardt et al. (2003) that
values of h(q) for q < 0 will be more than that for q > 0. Thus the values of Hurst
exponent h(q) obtained indicate multifractal behavior of the ECG time series. The
variation of h(q) for q < 0 and q > 0 is depicted in Fig. 3.2 which denotes that the
degree of multifractality is different in different cases. The values of classical scaling
exponent τ(q) and its variation with q are shown in Fig. 3.3 which is also indicative
of multifractal nature of the time series as for a monofractal series, τ(q) depends
linearly on q. Thus the non-linear dependence of τ(q) on q and the dependence of h
(q) on q give evidence for the multifractality of the postictal heart rate oscillations.
Figure 3.2 depicts that for q¼ 2, the generalized Hurst exponent h(q) of all the ECG
signals is more than 0.5. This indicates that all the signals possess long-range
correlation and persistent properties (Ghosh et al. 2017). The multifractal spectrum

Fig. 3.1 Plot of ln Fq vs. ln s of a particular ECG signal. (Ghosh et al. 2017)

3.3 Multifractal Detrended Fluctuation Analysis of ECG Signals 85



Fig. 3.2 Plot of h(q) vs. q of seven postictal ECG signals. (Ghosh et al. 2017)

Fig. 3.3 Plot of τ(q) vs. q of seven postictal ECG signals. (Ghosh et al. 2017)
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can be used to evaluate the degree of multifractality or complexity in the signal.
Ashkenazy et al. (2003) have associated the width of the multifractal spectrum ( f(α)
versus α) with the degree of multifractality. The multifractal spectrum of seven
postictal ECG signals is shown in Fig. 3.4. The values of multifractal width “w”
obtained by fitting the multifractal spectrum are shown in Table 3.1. We observe that
for all the postictal ECG signals, the multifractal widths are different ranging from as
low as 1.17 to as high as 3.95.

Fig. 3.4 Plot of f(α) vs. α of seven postictal ECG signals. (Ghosh et al. 2017)

Table 3.1 Values of multifractal width (w) and auto-correlation exponent (γ) of seven postictal
ECG signals for original and shuffled series (Ghosh et al. 2017)

ECG signals

Multifractal width w Auto-correlation exponent γ

Original Shuffled Original Shuffled

sz01 1.815 � 0.177 0.894 � 0.044 0.998 � 0.012 0.995 � 0.005

sz02 3.950 � 0.184 0.498 � 0.009 0.709 � 0.012 0.856 � 0.006

sz03 1.661 � 0.134 0.781 � 0.029 0.804 � 0.014 0.962 � 0.005

sz04 1.527 � 0.135 0.654 � 0.020 0.733 � 0.012 0.993 � 0.006

sz05 1.269 � 0.119 0.761 � 0.025 0.643 � 0.007 1.085 � 0.006

sz06 1.165 � 0.060 0.403 � 0.006 0.475 � 0.007 0.942 � 0.005

sz07 1.604 � 0.085 0.742 � 0.031 0.801 � 0.006 0.908 � 0.005
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In 2010, Dutta (2010) conducted a study using BIDMC congestive heart failure
database with MF-DFA method and reported multifractal width in case of healthy
subjects in the range 1.073 to 1.179, whereas for patients suffering from congestive
heart failure (CHF), the values correspond to 1.146 to 2.314. The values of
multifractal width obtained from BIDMC database are reported in Table 3.2. Thus
the values depicted in Tables 3.1 and 3.2 clearly reveal that the multifractal width of
ECG recordings of seizure patients is greater than that observed for healthy subjects
and in some cases the width of seizure patients ECG exceeds that of CHF also
(Ghosh et al. 2017).

From Table 3.1, we can see the value of multifractal width for sz06 is the least and
the auto-correlation exponent (γ) which is presented in the same table is 0.48 which
reveals a high degree of correlation as we know a lower of value of γ corresponds to
a higher degree of correlation. Thus, from these two values of w and γ, we can say
that for sz06, the effect of seizure on heart oscillations is the least. Further the same
table also reveals the fact that for sz02 the effect of seizure on ECG is the maximum
as value of multifractal width is twice than that of rest and γ also approaches
uncorrelated behavior which is indicated by value of γ close to 1(Ghosh et al.
2017). To analyze the origin of multifractality, we randomly shuffled the ECG
signals and then applied the MF-DFA technique. Difference in values of the
multifractal width and auto-correlation exponent for the original and shuffled series
are presented in Table 3.1. The shuffled series shows weaker multifractality which
implies that the cause of multifractality is due to both long-range correlations and
broad probability distribution function. Owing to relatively short sample size, we
have not excluded the origin of multifractality due to broad probability distribution
function. Values of auto-correlation exponent can be seen as close to 1 in all cases
which is an indication that all correlations are spoiled while shuffling the series. For a
particular set, the difference in the characteristics of original and shuffled series is
depicted in the plots of h(q) vs. q, τ(q) vs. q, and f (α) vs. α, respectively, in Figs. 3.5,
3.6, and 3.7 (Ghosh et al. 2017).

This study thus clearly states that except sz02, the multifractal width of epileptic
patients indicates loss of multifractality which is the outcome of abnormality in the

Table 3.2 Values of multifractal width (w) of ECG signals of normal healthy people and CHF
patients (Channel I) (Ghosh et al. 2017)

ECG signals of healthy
people

Multifractal width
(w)

ECG signals of CHF
patients

Multifractal width
(w)

Sample I 1.107 � 0.152 Sample I 1.735 � 0.069

Sample II 1.179 � 0.139 Sample II 2.314 � 0.087

Sample III 1.090 � 0.082 Sample III 1.146 � 0.239

Sample IV 1.073 � 0.045 Sample IV 2.313 � 0.039

Sample V 1.110 � 0.151 Sample V 1.240 � 0.132
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functioning of the heart. Ivanov et al. (1999) also showed loss of multifractality for
subjects with a pathological condition-congestive heart failure in contrast to healthy
subjects. They observed linearity of classical scaling exponent τ(q) and narrowness
of multifractal spectrum in pathological condition. Same observation was also made
by Peng et al. (1995). The case of the patient (sz02) is an uneven one, since contrary
to loss of multifractality in other subjects, the present analysis shows an unusual
higher degree of multifractality. This observation deserves special attention so far as
understanding of dynamics of electrocardiography is concerned. Nevertheless, it can
be safely inferred that this anomalous fluctuation has genesis in the epileptic seizure
of the patient (Ghosh et al. 2017).

We have reasons to comment that the present analysis of ECG data from postictal
patients with a very sensitive and rigorous non-linear technique provides information
irrespective of cardiac status of postictal patient quantitatively which is not at all
possible with other existing techniques. The present investigation clearly indicates
that MF-DFA is a proper tool for further exhaustive investigation taking large data
sets which eventually might be able to supply quantitative information about the
cardiac status of the patients. This quantitative approach is a step forward toward
assessment and monitoring of epileptic patients with the help of quantitative infor-
mation about the cardiac status.

Fig. 3.5 Plot of h(q) vs. q of original and shuffled ECG signal of a particular subject. (Ghosh et al.
2017)
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Fig. 3.6 Plot of τ(q) vs. q of original and shuffled ECG signal of a particular subject. (Ghosh et al.
2017)

Fig. 3.7 Plot of f(α) vs. α of original and shuffled ECG signal of a particular subject. (Ghosh et al.
2017)
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3.4 Results and Possible Biomarker

The application of rigorous non-linear technique in analyzing ECG data of patients
clearly supports the fact that the epileptic seizure is associated with the autonomic
deregulation. The analysis further shows the degree of autonomic deregulation can
be quantified with the help of two parameters, i.e., the multifractal width and auto-
correlation exponent.

However, along with postictal data, pre-ictal data for different epileptic patients
can be analyzed following this technique which possesses a far-fetching importance
for development of software where the findings can be used to develop automatic
alarm before seizure as well as even a precursor of cardiac arrest. In this direction
since no attempt has been reported so far, the present analysis provides new data
using chaos-based latest state-of-the-art methodology which can capture a small
change of signal giving rise to a large consequence. It deserves emphasizing that the
epilepsy patients experience significant cardiac changes during seizure, causing
serious cardiac malfunctions which may lead to SUDEP. Through continuous
monitoring of the multifractal parameters, attempts can be made to provide infor-
mation about the degree of cardiac malfunction for which proper medication can be
administered to avoid SUDEP. This method of assessment of ECG signal post
seizure, with the help of multifractal parameters as elaborated earlier, can be used
to develop a suitable software-based biomarker to help control mortality.
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Chapter 4
Multifractal Analysis
of Electromyography Data

Abstract Myopathies (MYO) are a group of disorders where malfunction of muscle
fibers occurs for a number of reasons which results in a muscular dysfunction
manifesting weakness of muscles. Neuropathies are also disorders of the peripheral
nervous system for which information transmission from brain and spinal cord to
every other part of the body is disturbed. For diagnosis and characterization of motor
neuron disease (MND), myopathy, and neuropathy, the electromyography (EMG) is
extensively used since EMG signal can be analyzed to obtain information in regard
to degree of disorder. The contents of the chapter deal with the details of a rigorous
and robust non-linear technique, namely, multifractal detrended fluctuation analysis,
to assess the multifractal property of EMG signals of patients with neuromuscular
disorders and also use of two quantitative parameters, the multifractal width, and the
auto-correlation exponent as biomarker for diagnosis and prognosis of both MYO
and NEURO and even for early detection of MND.

4.1 Introduction

The human skeletal muscular system is comprised of the nervous system and the
muscular system, which collectively is known as the neuromuscular system. The
disorders which originate in the nervous system, in the neuromuscular junctions, and
in the muscle fibers are known as neuromuscular disorders. The disease may cause
minor of strength or its severity may lead to even amputation resulting from neuron
or muscle death (Subasi 2013). Proper diagnosis of the disorder is crucial so that
treatment can begin at an early stage (Alkan and Gunay 2012). Among several
neuromuscular disorders, we have considered myopathy, neuropathy, or
amyotrophic lateral sclerosis (ALS).
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4.2 Motor Neuron and Musculoskeletal Disease:
Neuropathy and Myopathy

Neuropathy (NEURO) or amyotrophic lateral sclerosis (ALS) is a relatively rare
neurodegenerative disorder of the peripheral nervous system for which information
transmission from brain and spinal cord to every other part of the body is disturbed.
Some typical symptoms are short-term insensibility, tingling and pricking sensa-
tions, reactions to touch, and even weakness in the muscles. Muscle wasting,
burning pain, paralysis, and organ or gland dysfunctions are other symptoms of
neuropathy. Longer duration of motor unit potentials with increased amplitude is
associated with neuropathy (Goen 2014). This disease is a part of motor neuron
disorder in which loss of life is the ultimate.

Myopathy (MYO) is a pathological condition where primarily the skeletal muscle
fibers are affected. Muscle dysfunction, cramps, stiffness, and spasm are some of the
common symptoms of myopathy. They can be either inherited or acquired. Most
muscular dystrophies are hereditary, causing severe degenerative changes in the
muscle fibers. Polymyositis is a frequently encountered myopathy associated with
commencement of weakening of the muscles which progresses slowly. In myopathy
patients’ short-term motor unit potentials with reduced amplitude are noticed
(Trojaborg 1987).

For diagnosis of both disorders, patients are first interviewed by doctors,
but in some cases they feel so weak that they are not able to even speak
(Artameeyanant et al. 2016). Under such circumstances electromyography (EMG)
of the muscle signals are recorded which can be diagnosed by a neurological
expert to detect myopathy and neuropathy (ALS) (Kincaid 2015; Weiss et al.
2015; Gitiaux et al. 2016).

4.3 Electromyography – A Tool to Detect Motor Neuron
Disease

Electromyography (EMG) is a standard technique to determine neurophysiologic
characteristics of skeletal muscles to diagnose neuromuscular disorders. EMG is the
record of electrical action potentials originated from a group of muscle fibers. These
muscle fibers are governed by the same motor nerve and are called motor unit. These
motor units which are the basic units of the muscle can be activated voluntarily. The
structure and condition of a motor unit can be assumed from the shape of waveform
of individual motor unit action potential (MUAP) (Bue et al. 2013). The motor unit
action potentials (Nikolic and Krarup 2011) have significant role in diagnosis of
disease and are extensively used by neurophysiologists. For abnormal muscles the
structure of MUAPs may become different which can be helpful in the identification
of disease (Fuglsang-Frederiksen 2000). Since manual inspection of the complicated
structures of MUAPs is difficult to assess and time consuming, hence detection of
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abnormalities in structure of MUAPs can be done quantitatively (Sharma et al.
2017). We have already discussed in Chap. 1 (Sect. 1.2.3) about the types of EMG
– the SEMG and IEMG (Farina and Negro 2012).

The movement or change in posture of any part of the body is associated with the
strength the strength of SEMG. The working condition of the muscle fibers is
reflected in the SEMG signals (Basmajian and De Luca 1985). Intramuscular
EMG (Monsifrot et al. 2004) which is an invasive method is not commonly used
due to the pain involved in the process. In this method a fine-wire or needle-type
electrode is introduced through the skin which reaches deep down the muscles.
Advancement of diagnosis technique for evaluation of neuromuscular disorders
based on EMG records is important and need of the day (Gokgoz and Subasi 2015).

4.4 Study of SEMG Signals

The surface electromyography (SEMG) signal has broad application in the areas of
neuromuscular disorder, rehabilitation, and control of prosthetic devices including
man–machine interface of individuals with amputations or congenitally deficient
limbs (Hudgins et al. 1993; Kang et al. 1996; Chang et al. 1996; Goge and Chan
2004; Acharya et al. 2011; Subasi 2013; Riillo et al. 2014). Changes in the properties
of the EMG signal signify neuromuscular disorder or other pathological conditions
originating either in the nervous system or in the muscles (Lima et al. 2016).
Different linear analysis methods have been used to describe the characteristics of
EMG signals. Time-domain features have been studied by zero crossings and root
mean square (RMS) (Hudgins et al. 1993) techniques, stochastic features by
autoregressive model coefficients (Farina et al. 2001), cepstral coefficients (Chang
et al. 1996), mean frequency and median frequency (MDN) (Gerdle and Eriksson
1990; Kang et al. 1996), etc. But there are certain limitations with these methods
(Ghosh et al. 2017).

Like other bioelectrical signals, EMG is also innately non-linear in nature. Some
of the typical characteristics it possesses are scale invariance, scaling range, power–
law scaling, and self-similarity (Eke et al. 2002; Sarkar and Leong 2003). We know
that in self-similarity a small-scale structure is a replica of the large-scale structure of
an object. Self-similarity can not only characterize different biomedical signals but
can also identify diverse arrangements in these signals (Janjarasjitt 2014; Najarian
and Splinter 2012). Self-similarity in EMG signals can be described by fractal
dimension (FD) measures (Hu et al. 2005), presenting the means to abstract distinct
features directly from these signals (Easwaramoorthy and Uthayakumar 2011).
Anmuth et al. (1994) and Gupta et al. (1997) have demonstrated the fractal nature
of SEMG. They noticed that as value of FD changes, the fraction of maximum
voluntary contraction (MVC) and flexion–extension speeds also changes. Webber
et al. (1995) used recurrence quantification analysis (RQA) to investigate the
changes of the percent determinism (%DET) in the course of muscle fatigue and
observed that the %DET measure performed significantly better than the (median
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frequency) MDF. A relation was found to exist between FD of needle EMG signal
and the strength of muscle contraction by Gitter and Czerniecki (1995). Several other
studies too demonstrated the FD of SEMG signals (Xu and Xiao 1997; Chen and
Wang 2000; Hu et al. 2005). In a study conducted by Nussbaum and Yassierli (2003)
among other non-linear methods used for characterizing EMG signals, fractal
dimension was found to be sensitive to the magnitude and rate of the generated
muscle force. To determine minute changes in the force of contraction, Ravier et al.
(2005) identified that the right slope index (RSI) of the fractal curve of SEMG has a
relation with the force of contraction. Arjunan and Kumar (2007) used the fractal
theory to estimate the level and source of muscle activity of different hand gestures
for determining the corresponding hand gesture. They found FD to define the
complexity of the SEMG signal and maximum fractal length (MFL) represented
the extent of activity in the muscles. When multiple muscles are functioning, this
feature is useful for analysis and modeling of SEMG patterns. Thus based on these
studies, Arjunan and Kumar (2014) inferred that fractal analysis of SEMG can be
used to determine the force of contraction of the muscle. To describe the irregularity
of a statistically stationary signal, fractal dimension is an important tool as it defines
the scale-invariant non-linear property of the signal. Arjunan and Kumar (2014)
opined that since small change in the muscle activity does not affect FD and signal
spectra of SEMG signals, thus FD should be the measure of muscle property such as
size and not muscle activity (Fox 1989; Kupa et al. 1995; Gabriel and Kamen 2009).
From this Arjunan and Kumar (2014) hypothesized that FD is not sufficient to
describe the force of contraction of muscles. The change in the value of FD due to
the increase in force of muscle contraction as reported in some works (Anmuth et al.
1994; Gupta et al. 1997; Xu and Xiao 1997; Hu et al. 2005) is the result of muscle
size change that is related to high levels of muscle contraction. Arjunan and Kumar
(2014) identified a new fractal-based feature (maximum fractal length – MFL) of
SEMG that relates to the strength of the muscle contraction even when contraction is
just 20%. Compared to other methods like as variance (VAR), waveform length
(WL), RSI, FD, and root mean square (RMS), the authors argued that both the
experimental results and linear regression analysis demonstrate MFL to be a better
estimate of strength of muscle contraction which can even detect minute muscle
activity changes. Ancillao et al. (2014) conducted an experiment to investigate the
correlation among the fractal dimension of the surface EMG signal obtained the
main erector muscle of the human leg, during a vertical jump and the height reached
in that jump. FD was found to characterize the EMG signal and significantly high
correlation coefficient between fractal dimension and height of the jump was
obtained by linear regression analysis in all the healthy subjects.

Several other works using different non-linear methods to determine the geom-
etry and fractal features of EMG signals (Chang et al. 2000, 2004, 2007; Chang and
Chang 2002; Chen et al. 2006; Shields 2006) have been reported. To evaluate the
fractal dimension, geometrical methods like Katz method (1988) and box-counting
method (Falconer 2003) have been applied by some authors. Other non-linear
methods such as non-linear entropy analysis have been applied on SEMG signals
to gather information about changes in different muscle statuses (Ghosh et al. 2017).
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For analyzing the fingers movements from three channels of SEMG Zhao et al.
(2007) employed sample entropy and wavelet transform coefficients. Naik et al.
(2009) made use of fractal dimension features to identify finger movements. Gang
et al. (2007) observed multifractality of SEMG signals obtained from biceps brachii
on the skin surface of right forearm of human subjects during a static contraction.
With DFA Phinyomark et al. (2009) determined the self-similarity of SEMG signal
and derived features different from mean absolute value (MAV) or root mean square
(RMS). In another work Phinyomark et al. (2010) once again demonstrated the
usefulness of DFA method for characterizing SEMG signals. The fractal scaling
exponent obtained can be a helpful tool that can characterize SEMG signals of
prosthetic or robot arm. In 2012 Phinyomark et al. (2012) identified DFA to be a
better measure compared to conventional techniques in characterizing EMG signals
from bifunctional movements, like flexion–extension. Principal component analysis
(PCA) allowed the examining of EMG activation relation among a large number of
muscles during lifting task (Moreside et al. 2014). Dang et al. (2012) showed EMG
to be a powerful tool for investigating the relationship between jaw imbalance and
the loss of arm strength with Higuchi’s fractal dimension (HFD) analysis. Lei and
Meng (2012) investigated the stochastic, deterministic, and chaotic behavior of
SEMG signals with non-linear techniques like surrogate data method, Volterra–
Wiener–Korenberg (VWK) model method, chaotic analysis method, symplectic
geometry method, and fractal analysis method. Difficulty in describing SEMG
using single fractal dimension, the authors understood the necessity of multifractal
analysis. For categorizing myopathy and healthy subjects using EMG signal, Patidar
et al. (2013) applied the back-propagation neural network classifier. Naeem et al.
(2014) used linear and non-linear techniques in combination to estimate their ability
to identify uterine EMG signals of term and preterm deliveries using artificial neural
network.

Vishnu and Shalu (2015) developed a technique to equate SEMG signals
recorded from biceps and triceps muscles with the corresponding angular velocity
of motion of forearm with a linear model – the auto-regressive exogenous
input (ARX) and two non-linear models, namely, Hammerstein and artificial
neural network (ANN). The results showed that “SEMG–angular velocity” model
based on ANN performs better in contrast to the conventional parametric system
identification models like Hammerstein and ARX. Several other authors have used
ANN to quantify EMG signals. Earlier Koike and Kawato (1995) used EMG signals
recorded from single-joint isometric motions to decode arm motion using a neural
network-based model. Smith et al. (2008) used ANN to study the continuous motion
of the fingers, using myoelectric activity from muscles of the forearm. Ryu et al.
(2008) also used neural network to study EMG signals of a one degree of freedom
(DoF) robot arm. Some other studies using the state–space model have been used to
evaluate human arm kinematics from myoelectric activity produced by
certain muscle groups (Artemiadis and Kyriakopoulos 2007, 2010, 2011).
To characterize EMG signals, Mishra et al. (2016) and Naik et al. (2016)
used empirical mode decomposition (EMD) which can decode signals from data
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collected in noisy non-linear and nonstationary processes (Artameeyanant et al.
2016). Lima et al. (2016) used relevance vector machines (RVM) and fractal
dimension (FD) for automatically identifying EMG signals related to different
classes of limb motion. Built on normalized weight vertical visibility algorithm
(NWVVA), an EMG feature extraction technique was presented by Artameeyanant
et al. (2016) to detect healthy, ALS, and myopathy statuses.

Fele et al. (2008) made a comparison among different linear and non-linear
techniques to differentiate EMG records of term and preterm delivery groups.
Non-linear techniques were found to be more suitable in discriminating the two
groups. Some works have argued that for clinical purposes, non-linear correlation
coefficient can enhance the utility of uterine EMG signals (Jezewski et al. 2005;
Khalil and Duchene 2007; Hassan et al. 2007, 2012; Lucovnik et al. 2011;
Alamedine et al. 2013). For determining uterine EMG signals during pregnancy
and labor, Diab et al. (2010, 2012) also applied non-linear analysis techniques. Ren
et al. (2015) were of the opinion that from data of uterine EMG can help in predicting
risk of preterm delivery. To analyze uterine EMG signals, various signal processing
techniques have been applied. They opined that using EMD method preterm and
term delivery records based on the entropy ratios of the instantaneous amplitude and
frequency of each two IMFs of uterine EMG signals can be classified. Thus analysis
of uterine EMG signals is important to help prevent premature birth thus decreasing
risk of infant mortality.

With a view to characterize neuromuscular disorders, we studied EMG signals
obtained from one healthy and diseased subjects using a non-linear method the
multifractal detrended fluctuation analysis (MF-DFA) proposed by Kantelhardt et al.
(2002). The usefulness of this method on complex bioelectrical signals has been
demonstrated by several researchers in the past.

4.5 Electromyography Data

In our study we obtained EMG data from “Physionet” which is a database that
contains different types of physiological data. Three subjects one belonging to the
healthy group, one with myopathy, and another with neuropathy were chosen for the
study. The details of the data are illustrated below.

Data were collected with a Medelec Synergy N2 EMG Monitoring System
(Oxford Instruments Medical, Old Woking, United Kingdom). EMG data are from:

1. A 44-year-old man without history of neuromuscular disease
2. A 57-year-old man with myopathy due to long-standing history of polymyositis,

treated effectively with steroids and low-dose methotrexate
3. A 62-year-old man with chronic low back pain and neuropathy due to a right L5

radiculopathy

The data were recorded at 50 KHz and then down-sampled to 4 KHz. During the
recording process, two analog filters were used: a 20 Hz high-pass filter and a 5 KHz
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low-pass filter. The data were further divided into five equal sets for each subject. A
plot of each signal for the three different groups for 1 s has been illustrated in
Figs. 4.1a, 4.1b, and 4.1c.

4.6 Multifractal Detrended Fluctuation Analysis of EMG
Signals

We know that multifractal detrended fluctuation analysis is a non-linear analysis
technique, the application of which on a given set of data provides information about
any evidence of self-similarity or persistence in the series (McArthur et al. 2013).
Since the above literature provides sufficient evidence of self-similarity of EMG
signals, hence we have been motivated to explore the EMG signals obtained from
“Physionet” EMG database [https://physionet.org/physiobank/database/emgdb]
using a self-similarity detection technique. The detail of the method is outlined in
the Appendix A.

Wang et al. (2007) analyzed isometric muscle fatigue of biceps brachii using
singularity spectrum of MF-DFA. Fractal features can help to classify SEMG signals
of forearm muscles. In order to understand the source of multifractality in the SEMG
signals obtained from healthy normal subjects in fatigue and non-fatigue circum-
stances, Marri and Swaminathan (2015a) transformed the signals into shuffled and
surrogate series and then applied MF-DFA technique. They found correlation to be
the main source of multifractality. They concluded that this multifractal analysis
method can be used for characterizing the changes that occur during muscle con-
traction in various neuromuscular studies. Marri and Swaminathan (2015b) pro-
posed a method for analyzing SEMG signals and identified onset of muscle fatigue
using multifractal detrending moving average algorithm (MF-DMA). In another
study Marri and Swaminathan (2016) applied MF-DMA to analyze SEMG data
from biceps brachii muscles of healthy participants The SEMG signal identified a
range of fractal exponents of different scales in fatigue and non-fatigue condition.
The authors found that the scaling and generalized Hurst exponent indicate the
influence of higher amplitude and lower amplitude fluctuation during fatigue
condition.

In our work we used MF-DFA, the method proposed by Kantelhardt et al. (2002)
to transform the data sets of EMG of healthy subject, people suffering from myop-
athy and neuropathy to extract the integrated signal. The method helps to minimize
the noise in the time series efficiently. The integrated time series was then divided to
Ns bins, where Ns ¼ int(N/s), and the fluctuation function Fq(s) was determined for
an index q varying between �10 and +10 in steps of 1. A plot of log Fq(s) vs. log
s for all the three sets of healthy, myopathy, and neuropathy is depicted in Figs. 4.2a,
4.2b, and 4.2c, respectively. We can see from all the plots that log Fq(s) varies
linearly with log s. If such a scaling exists with increase in value of s, the fluctuation
function Fq(s) increases and shows power–law behavior for long-range power
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Fig. 4.1b Plot of EMG signal of a myopathy subject for 1 s

Fig. 4.1a Plot of EMG signal of a healthy subject for 1 s
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Fig. 4.2a Plot of ln Fq vs. ln s for a particular set of EMG signal of healthy subject (Ghosh et al.
2017)

Fig. 4.1c Plot of EMG signal of a neuropathy subject for 1 s
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Fig. 4.2b Plot of ln Fq vs. ln s for a particular set of EMG signal of myopathy subject (Ghosh et al.
2017)

Fig. 4.2c Plot of ln Fq vs. ln s for a particular set of EMG signal of neuropathy subject (Ghosh et al.
2017)
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correlated series, and then the linear dependence of the plot is an indication of
scaling behavior. Thus the plot of log Fq(s) vs. log s is indicative of scaling behavior
for healthy, myopathy, and neuropathy subjects. From the slope of linear fit of log
Fq(s) vs. log s plots, we obtain the values of generalized Hurst exponent h(q). We
know a unique value of Hurst exponent h(q) for all values of q is indicative of a
monofractal time series. But here from the plot of h(q) vs. q (Fig. 4.3), we can see h
(q) to vary with q. When Hurst exponent h(q) is found to depend on q, the time series
is thought to be multifractal. It has been shown by Kantelhardt et al. (2003) that for
q < 0, the Hurst exponent value will be more than that for q > 0. Thus the plot of
generalized Hurst exponent h(q) against q proves multifractality of EMG time series
of all the sets.

Next we determined the values of classical scaling exponent τ(q). For a
monofractal series, the scaling exponent τ(q) is found to depend linearly with q,
whereas for a multifractal series, the scaling exponent τ(q) depends non-linearly on
q. Thus from Fig. 4.4 we can observe the multifractality of EMG signals of healthy,
myopathy, and neuropathy as τ(q) is found to depend non-linearly on q (Ghosh et al.
2017). Since multifractal signals have multiple Hurst exponent, τ(q) is found to
depend non-linearly on q (Ashkenazy et al. 2003a). Hence multifractal feature of
EMG signals is evidenced from dependence of both τ(q) and h(q) on q. Further
degree of dependence of h(q) on q can be observed from Fig. 4.3 which implies that
the degree of multifractality is different in different cases (Ghosh et al. 2017).

Fig. 4.3 Plot of h(q) vs. q for a particular set of EMG signals of healthy, myopathy, and neuropathy
(Ghosh et al. 2017)
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Table 4.1 depicts the values of Hurst exponent h(q) of healthy, myopathy, and
neuropathy subjects. The Hurst exponent values are seen to decrease as q increases
from �10 to +10. For q ¼ 2 we can see the generalized Hurst exponent h(q) of
healthy and myopathy subjects are greater than 0.5. We know the exponent h(q¼ 2)
is equal to Hurst index (Peng et al. 1994). Value of h at q ¼ 2 is important as it
provides explanation about the nature of the time series, i.e., whether the series is a
random process or long-range anticorrelated or correlated. Value of h(q ¼ 2) ¼ 0.5
corresponds to scale invariance of the series, and the series is an independent random
process. For h(q ¼ 2) < 0.5 the series is long-range anticorrelated and if 0.5 < h
(q ¼ 2) < 1, the series shows long-term correlated behavior, which is a multifractal
character. Thus from Table 4.1 we can see that for healthy and myopathy subjects,
the value of generalized Hurst exponent h(q ¼ 2) is more than 0.5 which is an
evidence that long-range correlation and persistent properties are present in the sets,
whereas for neuropathy subject, h(q ¼ 2) is less than 0.5, which indicates
anticorrelation and anti-persistence of the EMG signal (Ghosh et al. 2017).

A quantitative determination of the degree of multifractality can also be done
from the multifractal spectrum. The width of the multifractal spectrum ( f(α) vs. α)
has been attributed to be the measure of the degree of multifractality (Ashkenazy
et al. 2003b). Figure 4.5 shows the multifractal spectrum of healthy, myopathy,
and neuropathy EMG signals. Shimizu et al. (2002) have noted that from the

Fig. 4.4 Plot of τ(q) vs. q for a particular set of EMG signals of healthy, myopathy, and neuropathy
(Ghosh et al. 2017)
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multifractal spectrum, the relative importance of various fractal exponents in the
time series can be extracted, thus denoting width of the spectrum to a range of
exponents (Shimizu et al. 2002).

In Table 4.2 the values of multifractal width w obtained by fitting the multifractal
spectrums about the neighborhood of maximum are listed, where we can observe
that the multifractal widths in five sets of all the three healthy, myopathy, and
neuropathy EMG signals are different ranging from as low as 1.144 to as high as
1.257, from 1.507 to 1.605, and from 1.655 to 1.991, respectively, giving a clear
indication of increasing complexity from healthy subject to neuropathy subject
(Ghosh et al. 2017). We know that the auto-correlation exponent (γ) gives an
estimate of the degree of correlation in a time series. Table 4.3 lists the values of
auto-correlation exponent (γ) of EMG signals of all the three sets. A lower value of γ
is an indication of strong correlation and a value of 1 is indicative of uncorrelated
behavior. Thus from the values obtained in Table 4.3, we can see that healthy subject
shows least value of auto-correlation exponent (γ), thus confirming a strong corre-
lation, whereas myopathy patient shows values close to 1 indicating weaker corre-
lation in EMG signal and neuropathy subjects greater than 1 implying no correlation
at all. Thus these values confirm loss of complexity in case of myopathy and
neuropathy subjects.

Table 4.1 Values of h(q)
corresponding to q for a
particular set of EMG signals
of healthy, myopathy, and
neuropathy subjects (Ghosh
et al. 2017)

Order q

Generalized Hurst exponent h(q)

Healthy Myopathy Neuropathy

�10 1.67 1.71 1.51

�9 1.66 1.70 1.50

�8 1.65 1.69 1.49

�7 1.63 1.67 1.47

�6 1.60 1.65 1.44

�5 1.57 1.61 1.41

�4 1.52 1.57 1.37

�3 1.45 1.50 1.32

�2 1.36 1.39 1.24

�1 1.26 1.18 1.12

0 1.09 0.84 0.68

1 1.01 0.68 0.54

2 0.93 0.57 0.36

3 0.88 0.51 0.29

4 0.85 0.46 0.26

5 0.82 0.42 0.25

6 0.80 0.39 0.23

7 0.78 0.36 0.22

8 0.77 0.34 0.21

9 0.75 0.33 0.20

10 0.75 0.32 0.19
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Only a few works have reported the multifractality of EMG signals. Earlier in the
above literature, we have briefed the work of Gang et al. (2007) where they used a
multifractal approach. Chhabra and Jensen (1989) showed multifractality of SEMG
signals. The area of the multifractal spectrum of the SEMG signals was found to
increase significantly during muscle fatigue. Thus they concluded that the area of the

Fig. 4.5 Plot of f(α) vs. α for a particular set of EMG signals of healthy, myopathy, and neuropathy
(Ghosh et al. 2017)

Table 4.2 Values of w for all
the five sets of EMG signals of
healthy, myopathy, and
neuropathy subjects (Ghosh
et al. 2017)

Set

Multifractal width (w)

Healthy Myopathy Neuropathy

1 1.161 � 0.042 1.605 � 0.078 1.655 � 0.140

2 1.146 � 0.041 1.583 � 0.077 1.848 � 0.103

3 1.257 � 0.026 1.598 � 0.087 1.855 � 0.105

4 1.230 � 0.050 1.507 � 0.078 1.991 � 0.078

5 1.144 � 0.041 1.598 � 0.073 1.813 � 0.082

Table 4.3 Values of γ for all
the five sets of EMG signals of
healthy, myopathy, and
neuropathy subjects (Ghosh
et al. 2017)

Set

Auto-correlation exponent (γ)

Healthy Myopathy Neuropathy

1 0.132 � 0.004 0.852 � 0.010 1.288 � 0.007

2 0.075 � 0.006 0.842 � 0.011 1.462 � 0.010

3 0.069 � 0.005 0.793 � 0.009 1.442 � 0.009

4 0.262 � 0.004 0.73 � 0.010 1.459 � 0.009

5 0.035 � 0.005 0.763 � 0.010 1.431 � 0.009
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multifractal spectrum could then be used as an assessor of muscle fatigue which is
more sensitive than the single characteristic frequency such as the median frequency
(MDF) or mean frequency (MNF) of the power spectral density (PSD) which was a
then popular method of estimating fatigue (Lindstrom et al. 1977; Stulen and De
Luca 1981). In their opinion the large area of SEMG multifractal singularity
spectrum is a reflection of the strengthened activity of the nervous system in the
process of muscle fatigue (Lindstrom et al. 1977). In another work Talebinejad et al.
(2009) used a bi-phase power spectrum method (BPSM) for fractal analysis of
SEMG signals and also included an algorithm for extraction of fractal indicators
(FIs). For force and joint angle, BSPM was evaluated. Fractal indicators demon-
strated the changes that reflect in EMG signals. BSPM was compared with geomet-
rical techniques and the 1/fα approach for fractal analysis of electromyography
signals. They concluded that BPSM provides reliable information, as it consists of
components which are capable of sensing force and joint angle effects separately,
which could be used as complementary information for confounded conventional
measures (Ghosh et al. 2017).

Though these methods demonstrate their usefulness in characterizing various
EMG signals, multifractal analysis using MF-DFA technique has been established
as a superior analysis technique than wavelet transform modulus maxima (WTMM)
in terms of reliable applications (Oswiecimka et al. 2006). Compared to other
conventional methods, MF-DFA has reached the highest precision in scaling anal-
ysis. Some other authors too have advocated the better performance of MF-DFA
than other multifractal analyses methods (Kantelhardt et al. 2002; Serrano and
Figliola 2009; Huang et al. 2011) as it can detect multifractality in both stationary
and nonstationary time series (Ghosh et al. 2017). Thus the study confirms that EMG
signal classification to assess neuromuscular disorders is possible accurately using
rigorous non-linear MF-DFA technique.

4.7 Results and Possible Advanced Level Biomarker

Using MF-DFA in our analysis, the EMG signals of healthy, myopathy, and
neuropathy subjects have been classified effectively with the help of two parameters:
the multifractal width (w) and auto-correlation exponent (γ). Not only have we
observed different degree of multifractality thus complexity of the EMG signals of
healthy, myopathy, and neuropathy subjects but have also observed the significant
variation in degree of auto-correlation for all the three subjects where subject with
neuropathy shows no correlation at all. Marri and Swaminathan (2016) opine that
modulation of muscle contraction in a certain way by neural motor drive is an
outcome of correlation present in the EMG signals. Multifractality of the EMG
series was believed to be mainly due to small fluctuations. Thus it was concluded
that analysis of SEMG signals by MF-DFA method can be effective in understand-
ing the dynamics of muscles in various neuromuscular disorders.
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The present study proposes a novel, rigorous method of assessment of myopathy
and neuropathy using EMG time series from a different perspective. The most
important point is that any EMG data available may be analyzed using the method
for diagnosis and prognosis of myopathy and neuropathy. Further this method has
the potential for use even for early detection of motor neuron disease (Ghosh et al.
2017). Thus electromyography data coupled with this fractal analytics can be
employed to develop software which eventually can easily serve as a biomarker in
predicting neuromuscular disorders.
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Chapter 5
Multifractal Study of Parkinson’s
and Huntington’s Diseases with Human
Gait Data

Abstract In this chapter we have presented how multifractal detrended cross-
correlation analysis technique can be used to study Parkinson’s disease from
human gait pattern of those patients when compared to those of normal people.
The chapter further emphasizes that this study is important as a new novel technique
whereby data from the correlation between the two feet provides status of the degree
of neurodegenerative disorder. The chapter also presents how multifractal method-
ologies can also be applied in Huntington’s disease.

5.1 Introduction

Locomotion is defined as the pattern of movement of animals from one geographic
location to another. From stating to stopping locomotion has many stages. These
stages which also includes change in speed and direction together combine to
produce displacement of body parts in specified manner that helps animals to
move forward (Kuo 2002; Inman et al. 2006). The human locomotion mechanism
is controlled by the central nervous system in coordination with the musculoskeletal
system. Premature motor control in young children generates walking patterns which
is not stable which leads to unpredictable posture. As children first learn to walk,
huge fluctuations are noted from one stride interval to the next (Hillmana et al.
2009). As motor skills develop, stride variability decreases (Hausdorff et al. 1999;
Holt et al. 2007) from childhood to adulthood.

A strong connection has been demonstrated between human walking and random
walk by Hausdorff et al. (2001). Although walking appears to us a regular periodic
process, even under stationary conditions, the gait pattern reveals small fluctuations.
Gait is basically the pattern of movement of limbs. Human locomotion can be
described by three distinct stages: (1) development stage (from resting position to
some velocity), (2) rhythmic stage (at some constant velocity), and (3) decay stage
(back to the rest position) (Scafetta et al. 2009). Human step has two different
phases. With the striking of ground, the first phase commences which ends when
the foot is lifted, and in the second phase the foot is lifted, and when it strikes the
ground again, the phase is completed (Singh et al. 2013). Human locomotion is not
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only a voluntary but is also an automatic operation whose rhythmic movements are
controlled by both feed forward and feedback control (Kuo 2002). Central pattern
generator (CPG) is comprised of an arrangement of firing neurons that can create a
synchronized output in the form of movement of muscles in a given succession
(Collins and Richmond 1994; Winters and Crago 2000). Because of identical cyclic
repetition of the movement of each limb (Griffin et al. 2000), its fluctuation can be
defined by a non-linear oscillator for participation of each limb in the locomotion
mechanism (Collins and Stewart 1993).

Conventional linear measure like standard deviation which is used to explore the
dynamics of human movement variability provides a measure of the extent or
magnitude of the variability about a central point. Lomax (2007) was of the opinion
that conventional linear methods used to examine variability presume that changes
that occur in between repetition of a task are random and independent from a
statistical viewpoint. Some previous studies have distinguished these variations
from noise (Dingwell and Cusumano 2000; Stergiou et al. 2004; Dingwell and
Kang 2007; Delignières and Torre 2009), while some other studies have indicated
the deterministic origin of these variations (Dingwell and Cusumano 2000; Miller
et al. 2006; Dingwell and Kang 2007; Harbourne and Stergiou 2009). Thus they are
neither random nor independent. Though stride variations during walking may
apparently appear to be random without any connection between the present and
future strides, but the healthy adult locomotor system is well connected where the
fluctuations from one stride to the next exhibit a sophisticated, hidden temporal
structure. Thus mathematical techniques in the domain of non-linear dynamics have
been developed to provide proper estimate of the temporal structure of variability in
contrast to traditional statistical tools which only determine the magnitude of
variation (Stergiou and Decker 2011).

Several studies have considered human gait to be a complex, non-linear process
by which the locomotor system incorporates input from the cerebellum, the motor
cortex, and the basal ganglia, as well as feedback from visual, vestibular, and
proprioceptive sensors. Under healthy conditions, the locomotor system produces
a stable walking pattern; the kinetics, kinematics, and muscular activity of gait
remain relatively constant from one step to the next, even during unconstrained
walking (Inman et al. 1981; Winter 1984; Palta 1985; Kadaba et al. 1989; Pailhous
and Bonnard 1992; Decker et al. 2010). This is the reason why most conventional
biomechanical studies are based on the thorough analysis of a walking cycle. The
data obtained are extrapolated into the whole walking process. Studies using
non-linear dynamics have revealed fluctuations of gait patterns even under appar-
ently stable conditions (Guimares and Isaacs 1980; Gabell and Nayak 1984;
Yamasaki et al. 1984, 1991). Stride interval fluctuations have been found to exhibit
fractal properties and long-range correlations in healthy, young adults (Hausdorff
2007). Thus, many studies have tried to elucidate (Van Emmerik et al. 2004) the
complex behavior human gait dynamics using practical applications mainly focusing
on aging and pathologies affecting human walking (Torres et al. 2013). Study of
human gait for normal and diseased set using different methods has also been
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reported (Hausdorf et al. 1995, 1996, 1997, 2000; Goldberger et al. 2002a, b;
Scafetta et al. 2003, 2007; Van Orden et al. 2009).

Several devices have analyzed human gait complexity using pressure or force
sensors (Webster et al. 2005; Beauchet et al. 2008) or hip and knee angles (Davis
et al. 1991). Mathematical methods have too been useful in quantifying the com-
plexity of gait dynamics. Costa et al. (2003) used multiscale entropy method to
compare the difference in complexity of gait in between walking speeds. With the
use of an entropy-based method, Kurz and Stergiou (2003) showed that aging may
cause neurophysiological changes which may affect in selecting a stable gait with
certainty. Matjaz (2005) used the largest Lyapunov exponent to determine the
dynamics of human gait. In a group of patients suffering from anterior cruciate
ligament deficit, Moraiti et al. (2007) employed Lyapunov exponent (LyE) and
found that the group presented more rigid and predictable walking patterns com-
pared to control group. The study suggests diminished system complexity and
reduced functional response. Other works using LyE have also been reported to
characterize the underlying gait complexity during movement (Stergiou et al. 2004;
Buzzi and Ulrich 2004; Yoshino et al. 2004; Kurz and Stergiou 2007). To predict
everyday walking activities, Cavanaugh et al. (2007) applied approximate entropy
(ApEn) on pedometer data and reported that, in comparison to active elderly
individuals, inactive individuals who walked less had more predictable walking
activity. Khandoker et al. (2008) used ApEn to study the risk for falls in the elderly
by analyzing the gait variability. Smith et al. (2011) used ApEn to estimate damaged
neuromotor control of movements in early stages of life. Scafetta et al. (2009)
reported fractal and multifractal properties of human gait stride intervals under
different conditions. Records obtained from subjects walking at normal, slow, and
fast pace speed were analyzed to determine changes in the fractal scaling as a
function of the stress condition of the system. They also analyzed subjects with
different ages from children to elderly and patients suffering from neurodegenerative
disease to determine changes in the fractal scalings as a function of the physical
maturation or degeneration of the system. They developed a supercentral pattern
generator (SCPG) model that correctly prognosticates that the decrease in average of
the long correlation of the stride interval time series for children and for the elderly or
for those with neurodegenerative diseases can be understood as a decrease in the
correlation length among the neurons of the biomechanical motor control system
(MCS) due to neural maturation and neurodegeneration, respectively (Dutta et al.
2016). Tochigi et al. (2012) applied SampEn to analyze the cycle-to-cycle variability
in leg acceleration signals during walking in elderly subjects and in adults with
symptomatic knee osteoarthritis and found lower variability in the knee osteoarthritis
compared to control group. Robbins et al. (2013) made use of principal component
analysis (PCA) a multivariate statistical technique to diagnose kinematic and kinetic
gait pattern (Robbins et al. 2013).

To determine stride interval fluctuations of walking of young healthy men on
ground around a circular path, some researchers have used spectral analysis and
detrended fluctuation analysis (DFA) (Goldberger et al. 2002b; Hausdorff et al.
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1995). DFA was used in another study to characterize human gait rhythm under
different walking rates (Hausdorff et al. 1996). Some works have reported the
scaling exponent α to quantify walking stability (Herman et al. 2005), gait speed
(Jordan et al. 2006, 2007a), and gait maturation (Hausdorff et al. 1999). Fractal-like
fluctuations have also been reported in case of healthy participants running or
walking on a treadmill (Frenkel-Toledo et al. 2005a; Jordan et al. 2007b).

Thus several models that have developed over the decades have helped us to
understand the mechanism behind the dynamics of walking and its alterations. These
models reinforce that neural mechanisms are interpretative of long-range correla-
tions in gait dynamics. Neural mechanism changes can classify different gait alter-
ation dynamics regardless of any changes in mechanics or peripheral function
(Hausdorff 2007).

The dynamics of human gait is believed to be altered as a person ages and also
with neurodegenerative diseases. With increase in age, balance and gait are affected
showing decline in strength, muscle mass, and bone density. Changes in central
nervous system due to age include shrinking neural soma and processes of the
central cortex. With increase in the complexity of the neurologic impairment, gait
variability seems to be affected (Singh et al. 2013). Neurodegenerative diseases like
Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral
sclerosis (ALS) affect the human gait dynamics. In the following sections a detailed
illustration of the gait complexity in neurodegenerative patients is outlined.

5.2 Parkinson’s Disease and Gait Data

Loss of dopamine-generating neurons in the basal ganglia causes Parkinson’s
disease (PD) which is an intensifying degenerative disorder of the central nervous
system. Defective locomotion accompanied with rest tremor, bradykinesia, rigidity,
and postural instability are the typical symptoms of PD (Hausdorff 2007). Fatigue,
festination, small shuffling steps, and decrease in both arm swing and walking speed
are some other signs of the disease (Wu and Krishnan 2010). Some works report that
decrease in length of the stride and gait speed which are seen often in PD are due to
bradykinetic manifestations (Morris et al. 1994a, 1996a). Parkinson’s patients are
not able to produce a steady gait rhythm, rather enhanced stride-to-stride variability
and reduced fractal scaling index are observed in PD (Blin et al. 1990; Hausdorff
et al. 1998, 2000; Frenkel-Toledo et al. 2005a). Not only patients in advanced stage
of PD ((Blin et al. 1990; Hausdorff et al. 1998; Stolze et al. 2001) show enhanced
stride-to-stride variability, both in the stride length and time but also patients in their
early stage and who have not been administered with antiparkinsonian medications
(Hausdorff et al. 1995; Baltadjieva et al. 2006).

To quantify kinetic, spatiotemporal, power spectral, and fractal parameters of the
gait in PD, several researchers have used computer-aided analysis technique (Blin
et al. 1990; Morris et al. 1999; Hausdorff et al. 1995, 1996, 1998, Hausdorf and
Alexander 2005; Sekine et al. 2002, 2004). Morris et al. (1994b) noticed that PD
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patients are able to regulate steps per minute. They also observed averaged stride
length to be significantly lower than healthy controls, consistent with some other
works (Morris et al. 1996b, 2001; Frenkel-Toledo et al. 2005b). Acceleration signals
of Parkinson’s patients while climbing stairs and walking along a corridor were
studied by Sekine et al. (2002) using wavelet-based fractal analysis and time-
frequency matching algorithm. In another work Sekine et al. (2004) noted that
acceleration signals of Parkinson’s subjects obtained during one gait cycle to the
next will change in a complex fashion with higher fractal dimensions of the body
motion. Some other studies also suggest the fluctuation dynamics of stride interval to
have increased notably in PD patients (Blin et al. 1990; Hausdorf et al. 1998, 2007).
Estimating the stride-to-stride fluctuations in healthy controls and in PD patients,
Hausdorff et al. (1998, 2007) obtained increased coefficient of variation in PD which
is thought to be associated to severeness of the disease (Hausdorff et al. 1998). They
also studied the reaction of external cueing with rhythmic auditory stimulation (e.g.,
by means of a metronome) on gait variability. Improved mobility and reduced fall
risk in PD patients are manifested by rhythmic auditory stimulation set to 110% of
the step rate (Hausdorff et al. 2007). Miller et al. (1996) reported increase of
electromyographic signal variability of gastrocnemius in PD patients. To estimate
the probability density functions (PDFs) of stride interval and its two sub-phases
(swing interval and stance interval), for healthy subjects and PD patients, Wu and
Krishnan (2010) used the Parzen-window method.

Ashkenazy et al. (2002) presented a stochastic model of gait rhythm on the basis
of transitions that occur between different neural centers which replicate
distinguishing statistical properties of normal human walking. The model reported
changes in the dynamics of gait from childhood to adulthood with reduced correla-
tion and volatility exponents with maturity. The model also produced time series
with multifractal spectrum. Increase in volatility exponent as a function of width of
the multifractal spectrum indicating change in multifractality with maturation was
also observed. West and Scafetta (2003) developed a supercentral pattern generator
(SCPG) model that produced both fractal and multifractal properties of gait dynam-
ics. Using SCPG technique Scafetta et al. (2009) found human stride interval to be a
complex time series that exhibits fractal and multifractal properties. The randomness
of the fluctuations in elderly or subjects with neurodegenerative diseases was found
to be higher.

With a motive to get a clear perception of gait dynamics of PD, we chose to
quantitatively assess the degree of multifractality and cross-correlation between the
total force under the left and right foot of human gait rhythm among the diseased and
control set using a multifractal cross-correlation technique proposed by Zhou (2008).

5.2.1 Gait Data

PD is a chronic and progressive neurological disorder that results in tremor, rigidity,
slowness, and postural instability. A disturbed gait is a common, debilitating
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symptom; patients with severe gait disturbances are prone to falls and may lose their
functional independence. To quantify the degree of cross-correlation between the left
and right foot in case of normal persons (control group) and patients with
Parkinson’s disease (PD), we studied the databases of two experiments from the
website www.physionet.org (Yogev et al. 2005; Hausdorf et al. 2007). In the first
experiment, 30 patients with idiopathic PD were compared to 28 control subjects of
similar age (Yogev et al. 2005), and in the second experiment, 29 patients with
idiopathic PD were compared to 26 healthy age-matched control subjects (Hausdorf
et al. 2007).

The database includes the vertical ground reaction force records of subjects as
they walked at their usual, self-selected pace for approximately 2 min on level
ground. Underneath each foot were eight sensors (Ultraflex Computer Dyno Graphy,
Infotronic Inc.) that measure force (in Newtons) as a function of time. The output of
each of these 16 sensors was digitized and recorded at 100 samples per second, and
the records also include 2 signals that reflect the sum of the 8 sensor outputs for each
foot. For this study we have selected the data that reflect the total force under the left
foot and total force under the right foot. The plot of one signal (for 3 s) from each
set of experiment for both control and diseased group is shown in Figs. 5.1a, 5.1b,
5.1c and 5.1d.

Fig. 5.1a Plot of the signal (force under each foot) for a particular Control subject for Experiment
1 for 3 s
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Fig. 5.1b Plot of the signal (force under each foot) for a particular Parkinson subject for Exper-
iment 1 for 3 s

Fig. 5.1c Plot of the signal (force under each foot) for a particular Control subject for Experiment
2 for 3 s



5.3 Multifractal and Multifractal Cross-Correlation
Analysis of Parkinson’s Disease

Monofractal or multifractal behavior may be reported while investigating a physio-
logical time series. Owing to same scaling behavior of monofractals for the signal
overall, they are indexed by a lone global exponent h0 (the Hurst exponent) or by a
single fractal dimension (Hurst 1951, Yu and Wang 2001), which indicates their
stationary behavior in view of their local scaling properties. We know that compared
to monofractals, multifractals are more complex as they can be dissolved into subsets
and have different local Hurst exponents (h) or different fractal dimensions. This can
assess the local singular behavior and describe the local scaling of the time series
(Muñoz-Diosdado 2005). Due to the inherently complex and inhomogeneous char-
acter of multifractals, various exponents are required to define their scaling proper-
ties (Malamud and Turcotte 1999; Bunde et al. 2002). The relevance of multifractal
formalism demonstrated by Ivanov et al. (1999) in human interbeat time series has
been elaborated earlier. West and Scafetta (2003) demonstrated that gait time series,
rather than being monofractal, are weakly multifractal. Muñoz-Diosdado (2005)
studied the multifractal properties of stride interval time series of control subjects
and patients with neurodegenerative disease. They observed narrow multifractal
spectra assuming monofractal behavior for gait time series of healthy young subjects

Fig. 5.1d Plot of the signal (force under each foot) for a particular Parkinson subject for Exper-
iment 2 for 3 s
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and wider spectra for old and diseased subjects. Hausdorff et al. (2001) extended the
detrending technique designed for monofractal series to multifractal formalism
(multifractal detrended fluctuation analysis) MF-DFA. Previous studies have empha-
sized the long-range correlation properties of gait series. Since in neurodegenerative
gait diseases the correlation between the two feet is expected to be hampered, so
instead of studying the time series of the left foot and right foot individually, a study
of cross-correlation between the two feet for the diseased subjects (as compared to
control group) would provide a better insight into the dynamics of gait. We have
used multifractal detrended cross-correlation analysis (MF-DXA) technique since it
has been widely tested in various kinds of systems and has produced effective
results. The mathematical detail of the method is briefed in Appendix B.

Multifractal analysis was applied to both control and diseased (Parkinson’s) set.
After transforming the data sets to the integrated time series, they were divided into
Ns bins where Ns ¼ int(N/s), N being the length of the series and s the length of the
bin. For both the experiments the range of s was taken from 15 to N/10 in steps of
1. The fluctuation function Fq(s) for values of q from �10 to +10 in steps of 1 was
first determined. Plot of log Fq versus log s for a particular subject for control group
and PD patients is shown in Figs. 5.2a, 5.2b, 5.2c, 5.2d, 5.2e and 5.2f. We can notice
linear dependence of log Fq on log s for different values of q which suggests that
there exists power–law cross-correlation between the left foot and right foot for both

Fig. 5.2a Plot of log Fq vs. log s (q ¼ �5, 0, +5) of Left Foot for a particular subject of Control
group for Experiment 2 (Dutta et al. 2016)
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Fig. 5.2b Plot of log Fq vs. log s (q ¼ �5, 0, +5) of Right Foot for a particular subject of Control
group for Experiment 2 (Dutta et al. 2016)

Fig. 5.2c Plot of log Fq vs. log s (q ¼ �5, 0, +5) of Cross between Left and Right Foot for a
particular subject of Control group for Experiment 2 (Dutta et al. 2016)



Fig. 5.2d Plot of log Fq vs. log s (q¼�5, 0, +5) of Left Foot for a particular subject of Parkinson’s
group for Experiment 2 (Dutta et al. 2016)

Fig. 5.2e Plot of log Fq vs. log s (q ¼ �5, 0, +5) of Right Foot for a particular subject of
Parkinson’s group for Experiment 2 (Dutta et al. 2016)
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healthy persons (control group) and persons with PD. The slope of linear fit to log
Fq(s) vs. log s plots gives the values of Hurst exponent h(q) and cross-correlation
scaling exponent λ(q). The relationship between scaling exponent λ(q) and q for a
particular healthy subject (control group) and a subject with PD for Experiments
1 and 2 are portrayed in Figs. 5.3a, 5.3b, 5.4a and 5.4b, respectively. For compar-
ison, the generalized Hurst exponent h(q) obtained from MF-DFA is also shown in
the same figure. Dependence of both h(q) and λ(q) on q can be seen which advocate
multifractal behavior, i.e., different power–law auto- and cross-correlations exist in
the gait times series of healthy (control) and diseased (PD) subjects (Dutta et al.
2016).

The singularity spectrum f(α) is generalized to two cross-correlated series. The
distribution of degree of cross-correlation in varied time scales can be interpreted
from the singularity spectrum. To determine multifractality of cross-correlation
between two series, a relation via a λ(q) Legendre transform (Feder 1988; Peitgen
et al. 1992) is obtained (detailed in Appendix B). A plot of f(α) vs. α is a measure of
the multifractal spectrum where α gives the singularity strength or Hölder exponent
and f(α) indicates the dimension of the subset of the series characterized by α. We
know that a unique value of Hölder exponent indicates monofractality, while
multifractality is identified by different values of α, leading to the existence of the
spectrum f(α). Figures 5.5a, 5.5b, 5.6a and 5.6b provide evidence of multifractal

Fig. 5.2f Plot of log Fq vs. log s (q ¼ �5, 0, +5) of Cross between Left and Right Foot for a
particular subject of Parkinson’s group for Experiment 2 (Dutta et al. 2016)
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Fig. 5.3a Plot of h(q) and λ(q) vs. q for a particular subject of Control Group for Experiment
1 (Dutta et al. 2016)

Fig. 5.3b Plot of h(q) and λ(q) vs. q for a particular subject of Parkinson’s Group for Experiment
1 (Dutta et al. 2016)

5.3 Multifractal and Multifractal Cross-Correlation Analysis of Parkinson’s Disease 129



Fig. 5.4a Plot of h(q) and λ(q) vs. q for a particular subject of Control Group for Experiment
2 (Dutta et al. 2016)

Fig. 5.4b Plot of h(q) and λ(q) vs. q for a particular subject of Parkinson’s Group for Experiment
2 (Dutta et al. 2016)
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Fig. 5.5a Plot of f(α) vs. α for a particular subject of Control Group for Experiment 1 (Dutta et al.
2016)

Fig. 5.5b Plot of f(α) vs. α for a particular subject of Parkinson’s Group for Experiment 1 (Dutta
et al. 2016)
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Fig. 5.6a Plot of f(α) vs. α for a particular subject of Control Group for Experiment 2 (Dutta et al.
2016)

Fig. 5.6b Plot of f(α) vs. α for a particular subject of Parkinson’s Group for Experiment 2 (Dutta
et al. 2016)
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behavior for Experiments 1 and 2, respectively. The broadening of the width of the
spectrum denotes the increase in degree of multifractality of the signals. For both the
experiments, it can be seen that the width of the cross-correlated signal is weaker
than the auto-correlated series (Dutta et al. 2016). This phenomenon has previously
been observed in other studies too (Movahed and Hermanis 2008; He and Chen
2011; Zhao et al. 2011; Wang and Xie 2012).

The relation where the cross-correlation scaling exponent λ(q) is average of the
generalized Hurst exponent [λ(q ¼ 2)� {hx (q ¼ 2) + hy (q¼ 2)}/2] of the two time
series of left and right foot is found to be between approximately valid in all the cases
within the limit of experimental error. The relation is depicted in Figs. 5.3a, 5.3b,
5.4a and 5.4b. The above relation is valid for any value of q for artificially generated
time series. However the relation is not valid for any value of q especially for the
negative values of q. Oswiecimka et al. (2014) have shown that the more the
difference between λ(q) and average generalized Hurst exponent, the more different
are the considered multifractals. It is evident from Figs. 5.3a, 5.3b, 5.4a and 5.4b that
for both the experiments the deviation between λ(q) and average generalized Hurst
exponent is more for the control group compared to the Parkinson’s group (Dutta
et al. 2016). We further notice from Figs. 5.3a, 5.3b, 5.4a and 5.4b that for both the
experiments the cross-correlation scaling exponent λ(q) for q ¼ 2 for both healthy
persons (Control group) and persons with PD is greater than 0.5 which means that
long-range cross-correlation and persistent properties exist in all the sets. A value of
λ(q) ¼ 0.5 signifies nonexistence of cross-correlation, and λ(q) > 0.5 denotes
sustained long-range cross-correlations, i.e., a large value in one variable will be
subsequent to a large value in another variable. When λ(q) < 0.5, anti-persistent
cross-correlations are present where a large value in one variable will succeed a
small value in another variable and vice versa (Yogev et al. 2005; Movahed and
Hermanis 2008). The auto- and the cross-correlation coefficients were estimated for
both the experiments. The distribution of values of auto- and cross-correlation
coefficients for both control group and diseased set is shown in Figs. 5.7a, 5.7b,
5.8a and 5.8b for Experiments 1 and 2, respectively. The mean values of the auto-
correlation coefficient (γ) for the left foot and the right foot and cross-correlation
coefficients (γx) are listed in Tables 5.1 and 5.2 for Experiments 1 and 2, respectively.
The corresponding variances are also listed in the Tables (Dutta et al. 2016).

To determine the statistical significance of the results, we applied ANOVA. The
values of F and p and the confidence level of the results being statistically significant
are also listed in the tables. A lower value of γx is an indication of a higher degree of
cross-correlation. It is observed that the right foot and the left foot show almost
identical values of auto-correlation in all the cases. The results show that for both the
experiments the control group shows a higher degree of auto- and cross-correlation
which is in accordance with previous studies of Scafetta et al. (2007) who have
observed that due to neuronal deterioration, a network of neurons controlling human
gait is less correlated in diseased set than a healthy neuronal network. A leftward
shift of the Hölder exponent distribution was observed and was estimated to increase
with the severity of the neurodegenerative disease. Hausdorff et al. (1996, 1997,
2000) have also observed loss of correlation in inter-stride interval fluctuation with

5.3 Multifractal and Multifractal Cross-Correlation Analysis of Parkinson’s Disease 133



Fig. 5.7a Distribution of values of auto-correlation coefficients for Left foot for Experiment
1 (Dutta et al. 2016)

Fig. 5.7b Distribution of values of auto-correlation coefficients for Right foot for Experiment
1 (Dutta et al. 2016)
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Fig. 5.8a Distribution of values of auto-correlation coefficients for Left foot for Experiment
2 (Dutta et al. 2016)

Fig. 5.8b Distribution of values of auto-correlation coefficients for Right foot for Experiment
2 (Dutta et al. 2016)
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patients suffering from Parkinson’s and Huntington’s disease (Dutta et al. 2016).
Considering the statistical significance of results, for both groups (control and PD),
the cross-correlations show a significant difference in values with a confidence level
of about 76% for Experiment 1. But for Experiment 2 the auto-correlation coefficient
for the left foot shows most significant distinction (73% confidence level) between
the normal and diseased set. Thus it is evident that the auto-correlation coefficients
alone are not sufficient to distinguish between normal and diseased set. Cross-
correlation coefficients can suggest a discriminate between normal and diseased
set when auto-correlation fails to do so (Dutta et al. 2016).

We know that the width of the multifractal spectrum indicates range of exponents.
To obtain the values of the exponents, the singularity spectrum is fitted to a quadratic
function around the position of maximum α0. The exponent B measures asymmetry
of the spectra. For a symmetric spectrum B¼ 0. A right-skewed spectrum with B > 0
indicates dominance of high fractal exponents and hence presence of fine structure,
while B < 0 suggests smooth structure. From the graphs of multifractal spectrum, we
can observe a right-skewed nature for both the experiments for both control and
diseased group in most of the cases. In Tables 5.1 and 5.2, the mean values of the
parameter B are provided. In Experiment 1 the values of B are significantly different
for the cross-correlated series, and control group shows a higher value of B
suggesting a more complex structure. However in Experiment 2 no significant
difference in value of B is found for control and diseased set (Dutta et al. 2016).

Table 5.1 Mean values of the multifractal width W and asymmetry parameter B, auto-correlation
coefficients for the left foot and right foot and cross-correlation coefficients for control and
Parkinson’s group along with variance and ANOVA parameters F and P, and confidence level
for Experiment 1 (Dutta et al. 2016)

Parameter Group Mean Variance F P Confidence level

γL Control 0.83 0.01 0.32 0.58 42%

Parkinson’s 0.87 0.05

γR Control 0.86 0.02 0.06 0.82 18%

Parkinson’s 0.88 0.04

γX Control 0.74 0.02 1.46 0.24 76%

Parkinson’s 0.83 0.04

WL Control 1.56 0.13 0.17 0.68 32%

Parkinson’s 1.62 0.13

WR Control 1.9 0.6 3.72 0.06 94%

Parkinson’s 1.54 0.06

WX Control 1.17 0.04 0.69 0.41 60%

Parkinson’s 1.3 0.2

BL Control 0.21 0.03 0.58 0.45 55%

Parkinson’s 0.27 0.05

BR Control 0.36 0.21 0.18 0.67 33%

Parkinson’s 0.31 0.03

BX Control 0.54 0.03 2.78 0.11 89%

Parkinson’s 0.40 0.05
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In Tables 5.1 and 5.2, the values of degree of multifractality (multifractal width W )
of auto- and cross-correlated series are presented for Experiments 1 and 2, respec-
tively. These values can also play an important role in differentiating normal and
diseased set. Except the control set for Experiment 1, all other sets show almost the
same value of degree of multifractality for the right and left foot. For Experiment
1, the degree of multifractality for the right foot shows most significant difference
between the normal and diseased set with a confidence level as high as 94%. But for
Experiment 2, significant different degrees of multifractality both the auto- and
cross-correlated series are observed for normal and diseased set. In most of the
cases, the degree of multifractality for control group is more than the patients
suffering from PD (Dutta et al. 2016).

Thus the study of cross-correlations between the left and right foot of control
subjects and patients suffering from Parkinson’s disease (PD) reveals interesting
observations. For both healthy and diseased persons, the human gait rhythm is found
to exhibit multifractal properties. For all persons with neurodegenerative diseases,
the degree of multifractality is significantly less in general. Degree of cross-
correlation is stronger in healthy subjects than those suffering from neurodegener-
ative disease. The study reveals almost same results for auto-correlation and degree
of multifractality for the right foot and left foot in most of the cases. Fundamental
results obtained from independent Experiments 1 and 2 are almost the same. This

Table 5.2 Mean values of the multifractal width W and asymmetry parameter B, auto-correlation
coefficients for the left foot and right foot and cross-correlation coefficients for control and
Parkinson’s group along with variance and ANOVA parameters F and P, and confidence level
for Experiment 2 (Dutta et al. 2016)

Parameter Group Mean Variance F P Confidence level

γL Control 0.65 0.03 1.24 0.27 73%

Parkinson’s 0.70 0.01

γR Control 0.64 0.04 0.28 0.60 40%

Parkinson’s 0.67 0.01

γX Control 0.59 0.03 0.30 0.58 42%

Parkinson’s 0.61 0.01

WL Control 2.4 0.4 1.49 0.23 77%

Parkinson’s 2.1 0.5

WR Control 2.3 0.7 2.07 0.15 85%

Parkinson’s 2.0 0.3

WX Control 1.9 0.2 4.14 0.05 95%

Parkinson’s 1.6 0.1

BL Control 0.26 0.06 0.55 0.46 54%

Parkinson’s 0.33 0.12

BR Control 0.23 0.05 0.62 0.43 57%

Parkinson’s 0.30 0.10

BX Control 0.47 0.05 0.11 0.74 26%

Parkinson’s 0.50 0.09
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leads us to conclude that the parameters W and γ can be used as an index for
assessment of onset, severity, and prognosis of different patient suffering from
neurodegenerative disease.

Ashkenazy et al. (2002) using wavelet transform modulus maxima and magnitude
sign analysis have shown that for healthy adults, stride interval time series is a
monofractal. Ivanov et al. (2009) also confirm the same results. The possible reason
for us observing a multifractal behavior for healthy adults may arise due to different
types of data (ground reaction force) which was used for the study. As discussed
earlier Scafetta et al. (2009) expressed complexity of human stride interval which
can be described by particular symmetries along with fractal and multifractal
properties using the SCPG technique. In elderly or cases with neurodegenerative
diseases, they also reported the randomness of fluctuations to be higher (Dutta et al.
2016).

We have used a high range of q from �10 to +10 which may trigger spurious
multifractality, a limitation discussed by Ivanov et al. (2001). However the results of
the present investigation are quite stable with respect to the order of moments.
Figure 5.9a and 5.9b is presented to show that the results of multifractal width do
not vary much with the order of moments, i.e., when q is varied between �10 to +10
and �5 to +5.

It has been shown by Podobnik et al. (2007, 2009) that if the auto-correlations are
stronger, then the cross-correlations will also be stronger. A χ2 test would be

Fig. 5.9a Values of multifractal width W for q ¼ �10 to +10 and q ¼ �5 to +5 for Experiment
1 (Dutta et al. 2016)
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indicative of presence of strong cross-correlations in the series. The results are
sensitive to order of detrending (Oswiecimka et al. 2013). A comparison of results
of different order of detrending would give more appropriate results. Nevertheless
the study presents new data on the cross-correlations of human gait time series. More
analysis with different data sets of various neurodegenerative diseases will be helpful
not only for better understanding of the dynamics of neurodegenerative disease but
also can be applied as a medical diagnostic tool (Dutta et al. 2016).

In the next section, we will focus on gait dynamics of another neurodegenerative
disease, namely, Huntington’s disease (HD).

5.4 Huntington’s Disease and Gait Data

Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects
muscle coordination and leads to cognitive decline and psychiatric problems. The
disease is progressive in nature which causes physical, mental, and emotional
alterations. The people affected cannot think, talk, and move properly. Basal ganglia
cells get damaged, which controls these capacities. HD being hereditary, there is
50% possibility that a child may acquire the abnormal gene. In the initial phase of the
disease, signs of poor memory; problems to take decisions; mood changes like

Fig. 5.9b Values of multifractal width W for q ¼ �10 to +10 and q ¼ �5 to +5 for Experiment
2 (Dutta et al. 2016)
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depression, anger, or irritability; increasing lack of coordination, twitching, or other
uncontrolled movements; and difficulty in walking, speaking, or swallowing are
seen (Singh et al. 2013). Grimbergen et al. (2008) examined fall and gait distur-
bances in Huntington’s disease. On comparing with healthy control, decreased stride
length and decreased gait velocity were observed in Huntington’s patients. Since
fallers were found to possess both the characteristics, falling was assumed to be the
common syndrome of Huntington’s disease. Huntington’s disease cannot heal
completely. With medicine some symptoms can only be controlled, not eradicate
the disease.

In order to investigate the fractal properties of the human gait in case of normal
persons (control group) and patients with Parkinson’s and Huntington’s diseases, we
studied the databases of human gait from the website www.physionet.org. The
records in the neurodegenerative disease are from patients with Parkinson’s disease
and Huntington’s disease, and records from healthy subjects (Control Group) have
been included as the comparison group (Dutta et al. 2013)

5.5 Multifractal Analysis of Huntington’s Data

An interesting work was reported by Dutta, Ghosh, and Chatterjee (Dutta et al. 2013)
where a multifractal analysis of gait time series of two diseased set, namely,
Parkinson’s and Huntington’s, and a control group was reported using MF-DFA
(the details of the method are discussed in Appendix A). We are aware that normal
gait time series is highly inhomogeneous and nonstationary and fluctuates about the
mean value in an irregular and complex manner.

The three sets of data were first transformed into the integrated signal and then
divided into Ns nonoverlapping bins. The value of s was chosen in the range 5 to N/5
in steps of 1 (N ¼ 1200) where s is the length of the bin and N length of the time
series. By varying values of q from �10 to +10, the fluctuation function Fq(s) was
obtained. For different q values, linear dependence of fluctuation function on scale s
for the three groups, namely, (i) control group, (ii) persons with Parkinson’s disease,
and (iii) persons with Huntington’s disease, was observed indicating a scaling
behavior. We can get values of generalized Hurst exponent h(q) from the plot of
linear fit of fluctuation function and time scale s. The obtained Hurst exponent h(q)
values were found to vary with q indicating a multifractal behavior. On calculating
the values of classical scaling exponent τ(q), it was found that τ(q) depends
non-linearly on q which gives evidence of multifractality of all the considered
time series. Thus both the variation of Hurst exponent and classical scaling exponent
with q reflect multifractality in human gait for each of healthy group and patients
suffering from Parkinson’s and Huntington’s disease. For each of the data set, the
degree of multifractality was determined quantitatively by calculating values of
singularity strength α and spectrum f(α) the dimension of subset series. The width
W of the spectrum is a measure of the degree of multifractality. The mean values of
width W of the multifractal spectra listed in Table 5.3 show that the width of
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multifractal spectrum is greater in case of the healthy subject (control group) than
those for patients with Parkinson’s and Huntington’s disease which suggests that the
degree of multifractality is more in case of healthy subjects than those with neuro-
degenerative diseases (Dutta et al. 2013).

To ascertain the origin of multifractality, the corresponding randomly shuffled
series was analyzed following the same procedure as for the original series for all the
three cases. In Table 5.4 the values of Wshuffled and γshuffled (auto-correlation shuf-
fled), the width of the multifractal spectra, and correlation coefficient for the original
and shuffled series for one subject in each group are depicted. Comparing the values
one can suggest that the origin of multifractality is due to both broad probability
distribution and long-range correlation, though long-range correlation is dominant as
evident from reduced values of multifractal width. Compared to auto-correlation (γ)
values for the original series, the values of γshuffled are close to 1 as expected since all
correlations are destroyed in the shuffling procedure. The values of the auto-
correlation coefficient reveal that the gait series is long-range positive correlated
series which approaches toward an uncorrelated series with neurodegenerative
diseases (Dutta et al. 2013).

Thus the analysis of human gait rhythm with MF-DFA technique of healthy
persons and persons with Parkinson’s diseases and Huntington disease reveals that
the gait rhythm manifests multifractal properties. The multifractal properties are
found to be more pronounced in normal persons, i.e., degree of multifractality is

Table 5.3 Mean values, variance of multifractal widthW, and ANOVA parameters F and p values
for all three groups (Dutta et al. 2013)

Set

Values of W

F PAverage Variance

Control left foot 3.7 2.1 8.79 0.002

Parkinson’s left foot 2.2 0.1

Huntington’s left foot 2.15 0.03

Control right foot 3.8 1.2 6.25 0.008

Parkinson’s right foot 2.8 1.1

Huntington’s right foot 2.3 0.3

Table 5.4 Values of multifractal widthW and auto-correlation coefficient γ for (i) healthy subjects
(control group), (ii) subjects with Parkinson’s disease, and (iii) subjects persons with Huntington’s
disease for both the original series and the shuffled series (Dutta et al. 2013)

SET FOOT Woriginal Wshuffled γoriginal γshuffled
Control group Left 4.0 � 0.1 0.93 � 0.07 0.53 1.03

Right 4.0 � 0.2 1.2 � 0.2 0.43 1.06

Parkinson’s disease Left 2.3 � 0.2 0.88 � 0.07 0.67 0.99

Right 2.7 � 0.1 0.93 � 0.07 0.61 0.99

Huntington’s disease Left 2.20 � 0.09 0.90 � 0.08 0.82 1.03

Right 2.07 � 0.09 0.72 � 0.05 0.86 1.07
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greater in normal persons, than in persons with neurodegenerative diseases. Thus the
MF-DFA method is capable of distinguishing between normal and diseased set. In
almost all of the cases, the left foot and the right foot data are seen to produce
identical results (Dutta et al. 2013).

Using ANOVA statistical significance of the results was evaluated. The values of
F and p are listed in Table 5.3. The values of W are found to be different in normal
and diseased set with a confidence level about 95%. Thus we can infer that the
neurodegenerative diseases can bring about an alteration in the fractal dynamics of
human gait due to weakening and impairment of neural control on locomotion (Dutta
et al. 2013). The results are consistent with previous studies. Hausdorff et al. (1996,
1997, 2000, 2001, Goldberger et al. 2002b) have observed loss of correlation in
inter-stride interval fluctuation with patients suffering from PD and HD. Scafetta
et al. (2007) have observed that due to neuronal deterioration, a network of neurons
controlling human gait is expected to be less correlated in diseased set than a healthy
neuronal network.

5.6 Discussions on Possible Use of the Result
for Biomarkers of Parkinson’s and Huntington’s

Neurodegenerative disease like Parkinson’s disease and Huntington’s disease can
not only be analyzed by studying EEG signals, but gait analysis can also provide
useful information in detection of these diseases. From literature it is very clear that
subjects with neurodegenerative diseases encounter gait problem. Cessation of
movement, shuffling of steps, taking small steps, etc. are some of the acute symp-
toms of these diseases. Hence researchers have not only focused on EEG related
study but also have researched gait dynamics with effective results. Since manual
estimation of stride interval is a very lengthy process and is also prone to errors, thus
it is the need of the day to develop automated techniques to detect heel and toe
strikes. Computational technique can measure heel and toe strike interval. Heel and
toe strike time interval of neurodegenerative disease subjects is then to be compared
with healthy subjects to get an estimate of the severity of these diseases. Study of
these diseases in the light of non-linear dynamics can provide a proper estimate of
degree of auto-correlation and cross-correction in the gait rhythm which can act as
possible biomarker for detection of Parkinson’s and Huntington’s disease.
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Chapter 6
Multifractal Correlation Study Between
Posture and Autonomic Deregulation Using
ECG and Blood Pressure Data

Abstract Recently posture-induced cardiovascular changes have become a subject
of study for its obvious implications. This chapter presents analysis of non-linear
time series of ECG and arterial blood pressure (ABP) data from a new perspective
using state-of-the-art non-linear technique for assessment of cardiac disorder
induced by different human posture. Precisely two methods multifractal detrended
fluctuation analysis and multifractal detrended cross-correlation analysis have been
applied to ECG and ABP data to quantify degree of impact of posture on cardio-
vascular functions. Moreover the knowledge of cross-correlation parameters is
significant as it provides information for understanding the dynamics of orthostatic
stress.

6.1 Introduction

The cardiovascular system, the heart, and circulation are regulated by higher brain
centers. The parts of the brain that modulate the cardiovascular system stem through
the activity of sympathetic and parasympathetic nerves (Hainsworth 1998). Cardio-
vascular variability analysis permits insight into the neural control mechanism of the
heart, leading to a new discipline known as “neurocardiology” (Natelson 1985;
Malik and Camm 1990; Aubert and Ramaekers 1999). The autonomic nervous
system (ANS) belongs to the central and peripheral nervous systems and is not
controlled by our wills. Due to the meaningful and noninvasive characteristics of
heart rate variability (HRV), it is used to determine the ANS activities of human
conventionally (Sornmo and Laguna 2005; Thayer et al. 2010, 2012).

As emphasized by Acharya et al. (2006), to study cardiovascular control physi-
ology and heartbeat dynamics, it is essential to perform mathematical modeling as
well as digital signal processing techniques. An estimate of the time interval between
two successive R waves recorded from the ECG signal, i.e., the RR interval, is used
in studying the cardiovascular system (Valenza et al. 2015). Since the heartbeat is
known to be regulated by the autonomous nervous system, the RR interval shows
oscillations about the mean value and is known as heart rate variability (HRV)
(Acharya et al. 2006).
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It is interesting to note that besides respiration, normal heartbeat and blood
pressure depend on factors like physical, environmental, mental, etc. and are char-
acterized by circadian variation. Alterations in the autonomic activity determine both
the heart rate and its modulation (Aubert et al. 2003). The autonomic nervous system
(ANS) is comprised of sympathetic nervous system and parasympathetic nervous
system. The activation of the sympathetic nervous system can raise blood pressure
and accelerate the heart rate and the parasympathetic nervous system can slow down
the heart rate (Tseng et al. 2013). Thus the autonomic nervous system is vital in
modulating the cardiovascular system by performing maximum function during
different physical activities in healthy people and also by demonstrating different
diseases of the cardiac system (Aubert et al. 2003).

Various physiological procedures have been used to get a deeper perception of
the functioning of the autonomic nervous system. Investigators have often used a
change in posture by either passive head-up tilt or active standing to impose
perturbation on the steady-state functioning of the ANS (Nepal and Paudel 2012).
For a change in body position from lying down to standing up under normal
physiological conditions, the body’s internal controlling process curbs large changes
of cerebral perfusion and cerebral blood flow during the action. Both cerebral
perfusion and cerebral blood flow are not maintained sufficiently in patients
with abnormal function of cerebral autoregulation and ANS disorder. Change
in cerebral blood flow velocity (CBFV), blood pressure (BP), and heartbeat or
heart rate (HR) due to change of posture can be studied performing tilt table test
(Tseng et al. 2013).

Postural hypotension patients may encounter whirling sensation or faint when
they get up suddenly from resting position. In such situation tilt table test can be used
which can provide information regarding the possible causes and severities of
postural hypotension. A change in blood pressure during tilt up may give an
indication of orthostatic hypotension. Additionally confiding on the condition of
ANS and cerebral autoregulation, patients’ heart rate and cerebral blood flow
velocity may or may not change during tilt up. In these situations analysis of
patients’ HR, BP, and CBFV changes and also interactions between these signals
becomes significant. This comprehensive approach can be helpful in evaluating the
patients’ ANS and cerebral autoregulation (Tseng et al. 2013). Thus body position
and postural changes determine a gravitational gradient acting upon the cardiovas-
cular and pulmonary systems (Jones et al. 2003). The maintenance of upright posture
not only requires coordinated neuromuscular control of postural muscles (Winter
et al. 1996) but also cardiovascular reflexes to maintain BP. The analysis of
variability of these biological signals using linear statistics (mean values, variability
measures, and spectra analysis) does not directly characterize their complexity,
irregularity, or predictability. Methods based on non-linear dynamics and “chaos”
theories may reveal subtle abnormalities in the cardiovascular regulation mecha-
nisms that may not be uncovered by traditional linear measures of variability, and
thus, they provide a useful tool for in-depth evaluation of the properties of complex
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biological systems. Cardiovascular research in the field of non-linear dynamics has
mainly focused on heart rate, and less importance has been given to blood pressure
variability, though continuous BP fluctuations are intrinsic characteristics of cardio-
vascular system (Papaioannou et al. 2006).

6.1.1 Blood Pressure

Blood pressure is another important physiological signal which is of great concern to
health experts as there is no alternative method of measuring other than the sphyg-
momanometer. The blood pressure is thought to carry significant information
regarding ones physical features. Blood pressure measurement can help to illustrate
cardiovascular diseases, like hypertension, heart attack, and asthma. Thus blood
pressure is an important biomarker of cardiovascular health (Klabunde 2005). As
blood circulates in the arteries, it exerts pressure on the walls of the arteries which is
noted as blood pressure (Bojanov 2005). It is the driving force which pushes the
blood to flow in the vessels. Way back in 1733 blood pressure was first measured.
Stephen Hales a veteran doctor used brass pipes to measure blood pressure in
animals. In 1896, an Italian physician Scipione Riva-Rocci developed the instrument
to measure blood pressure – the sphygmomanometer (Ward et al. 2007). Towards
the end of the cardiac cycle when the ventricles contract, blood flows from the
ventricles to the arteries and the maximum pressure in the arteries is measured as
systolic blood pressure (SBP), whereas ventricles filled with blood at the beginning
of the cardiac cycle exert minimum pressure on the arteries during ventricular
diastole, noted as diastolic blood pressure (DBP) (Bojanov 2005). Normal blood
pressure in adults is 120/80 mmHg where 120 mmHg is the systolic pressure and
80 mmHg is the diastolic pressure. Large deviation of these values is an indication of
cardiac disease.

The analytical method for blood pressure or changes in heart rate is generally a
linear process, but normal physiological modulations of BP and HR are considered
to be mostly complex and non-linear. Several authors have advocated the fact that
conventional time and frequency domain analysis techniques based on the linear
fluctuation of heart rate are insufficient to outline the changes in heart rate dynamics
(Coenen et al. 1977; Fakhouri 1980; Dasheiff and Dickinson 1986; Oppenheimer
2001; Berilgen et al. 2004; Lahrmann et al. 2006; Kamal 2006, 2010; De Ferrari
et al. 2009; Foldvary-Schaefer and Unnwongse 2011; Zamponi et al. 2011;
Meregnani et al. 2011); thus, new techniques in the domain of non-linear dynamics
have been initiated to quantify complex heart rate dynamics and complement
conventional measures of its variability (Kamal 2014). The principles of
non-linear dynamics including chaos theory and fractal concepts have been investi-
gated to provide a better understanding of the transition(s) that occur during the
transition from a healthy to a pathological state (Goldberger et al. 1988). These
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authors emphasize that it is the degree of variability in say, for example, the heart rate
that is a characteristic of a healthy individual. A gradual decrease in the variability
indicates a transition from a healthy state to a pathological state. Analysis of heart
failure is of tremendous significance since it is a major medical problem that affects
the human population on a large scale worldwide.

Papaioannou et al. (2006) investigated the effect of caffeine on indices expressing
the complex and “chaotic” non-linear characteristics of BP variability. Kinnane et al.
(2003) analyzed BP signals with the help of different non-linear time series analysis
techniques. The possible factors that could affect blood pressure were either
removed or enhanced experimentally so that the mechanisms controlling BP could
be identified by chaotic analysis of the signals. For different experimental condi-
tions, the level of chaos varied demonstrating significant reduction in case of other
experimental conditions compared to control conditions. Pavlov et al. (2005)
discussed how stress affects the features of multifractality in the cardiovascular
dynamics using wavelet transform modulus maxima method. For arterial blood
pressure recordings in healthy rats, the study reported that the stress-induced changes
of multifractality may be different for male and female organisms. They concluded
that for male rats stress reduces “smoothness” of blood pressure dynamics and
sometimes may also reduce the degree of multifractality, whereas female rats
showed less sensitive to stresses. Some works have reported an increase in systolic
and diastolic pressures during head-up tilt in normal subjects (Cooke et al. 1999;
Porta et al. 2012). Gospodinova and Gospodinov (2014) investigated arterial vibra-
tions of subjects with normal and high blood pressure using the fractal and
multifractal methods. Using DFA method the authors defined the complexity of
investigated data through significant differences in scalable behavior between
healthy subjects with normal blood pressure and pathological cases with high
blood pressure. On the base of the multifractal analysis, they concluded that the
investigated signals, corresponding to the healthy subjects, showed multifractal
behavior and in pathological cases the signals are monofractals. The fractal and
multifractal analyses of the investigated signals corresponding with arterial vibra-
tions of the people with normal and high blood pressure show that they are suitable
for noninvasive methods of diagnostics, forecast, and prevention of the pathological
statuses.

6.1.2 Non-linear Heart Rate Variability Analysis

We know that the electrical activity of heart cells is measured by the electrocardio-
gram signal. The impulse causes the rhythmic contraction of the heart, where the
electrical performance of the heart is represented by beats (Estrada et al. 2014).
Pioneer work of Glass and Mackey (1988) introduced non-linear approaches into
heart rhythm analysis. Ritzenberg et al. (1984) were the first to provide evidence of
non-linear behavior in the electrocardiogram and arterial blood pressure traces of a
dog that were injected with noradrenaline. Goldberger andWest (1987) were the first
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to analyze HR variability (HRV) using non-linear fractal dynamics. They opined that
the “constrained randomness” observed for physiological variability and adaptability
can be explained by fractal scale invariance. Goldberger et al. (1988) reported that
patients with high risk of sudden cardiac death exhibit non-linear HR dynamics
along with abrupt spectral changes and sustained low-frequency (LF) oscillations.
Later in 1991 Goldberger suggested that due to certain pathological conditions like
reduced HR dynamics, the complexity of physiological variability may lose prior to
sudden death and aging (Goldberger 1991).

Multivariate non-linear analysis of HRV was performed for the first time by
Babloyantz and Destexhe (1988). For quantification of non-linearity, ECG obtained
from four normal subjects were analyzed qualitatively and quantitatively using phase
portrait, Poincaré section, correlation dimension, Lyapunov exponent, and Kolmo-
gorov entropy. They found variability underlying inter-beat intervals to be not
random, but to reveal short-range correlations controlled by deterministic laws.
Chaffin et al. (1991) applied phase space reconstruction and dimensional analysis
to study HR traces recorded from scalp electrodes of 12 healthy fetuses. For
estimating the complexity of cardiovascular system, Pincus (1991) amended the
original version of correlation dimension and Kolmogorov entropy (Grassberger and
Procaccia 1983; Eckmann and Ruelle 1985), to develop approximate entropy
(ApEn). Richman and Moorman (2000) later upgraded approximate entropy
(ApEn) to “sample entropy” (SampEn). Decrease in the value of SampEn in case
of neonatal HR before clinical diagnosis of sepsis and sepsis-like illness was
reported by Lake et al. (2002). Tuzcu et al. (2006) reported low values of SampEn
prior to emergence of atrial fibrillation (Voss et al. 2009). Peng et al. (1995) applied
DFA to characterize the fractal structure of HR. Ivanov et al. (1999) discovered
multifractality in HR dynamics and showed that the heartbeat modulation requires
multiple scaling exponents for its characterization. For determining complexity over
multiple scales, Costa et al. (2002, 2005) presented new techniques. In deadly
conditions loss of multiscale complexity (Norris et al. 2008) advocates clinical
importance of multiscale complexity measure. Humeau et al. (2008) used wavelet-
based representations, Holder exponents, and sample entropy to quantify laser
Doppler flowmetry (LDF) signals which allow the monitoring of microvascular
blood flow, thereby providing a peripheral view of the cardiovascular system. The
results indicated a possible modification of the peripheral cardiovascular system with
aging. Thus, the endothelial-related metabolic activity was found to decrease, but not
significantly, with aging. Further the LDL signals were found to be greatly
monofractal in elderly subjects compared to the younger subjects where LDF signals
are weakly multifractal. The average mean sample entropy value of LDF signals was
found to decrease slightly with age. Thus the authors concluded that the study can
help in acquiring knowledge about the relationship between the status of microvas-
cular system and age thus leading to age-related non-linear modeling which would
be more authentic (Humeau et al. 2008). Tseng et al. (2013) used linear and
non-linear techniques to study healthy subjects or subjects with postural hypoten-
sion, while subjects underwent the tilt table exam. The study was conducted in two
phases. In the first phase, change in HR during tilt table test was analyzed using
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power spectral density (PSD) analysis, detrended fluctuation analysis (DFA), and
multiscale entropy (MSE) analysis, and in the second phase, change between BP and
CBFV was analyzed using MSE and correlation coefficient analysis (Tseng et al.
2013). Moga et al. (2014) conducted a study to determine the physiological basis of
methods for computing the dynamics of beat-to-beat RR interval. New methods for
estimating ventricular arrhythmia and sudden cardiac death in congestive heart
failure patients were also determined (Malik and Camm 1995). Cornforth et al.
(2015) compared three multiscale measures, namely, multiscale entropy (MSE),
multifractal detrended fluctuation analysis (MFDFA), and Renyi entropy (RE), to
compare data of RR intervals obtained from cardiac autonomic neuropathy (CAN)
patients and aged controls. Castiglioni and Merati (2017) applied fractal analysis to
study HR variability in paraplegic patients. Fractal analysis was found to be superior
compared to traditional power spectral analysis in a subgroup of paraplegic subjects
with sound cardiac health. In a recent study, Castiglioni et al. (2018) described the
multifractal and multiscale characteristics of cardiovascular signals in healthy sub-
jects under controlled conditions. Using DFA-based method, they compared three
cardiovascular signals, namely, inter-beat interval (IBI, inverse of heart rate), SBP,
and DBP signals, recorded in 42 female and 42 male volunteers. The method
optimizes data splitting in blocks to reduce the DFA estimation variance and to
evaluate scale coefficients with Taylor’s expansion formulas and maps the scales
from beat domains to temporal domains. The analysis showed that scale coefficients
and degree of multifractality depend on the temporal scale, with marked differences
between IBI, SBP, and DBP and with significant sex differences. Results may be
interpreted considering the distinct physiological mechanisms regulating heart rate
and blood pressure dynamics and the different autonomic profiles of males and
females.

6.1.3 Correlation of Heart Rate and Blood Pressure Signals

In order to understand the dynamics of the cardiovascular system, analysis of both
HR and BP signals simultaneously is important as there is strong coherence between
HR variability and BP variability (Saul et al. 1991; Pagani et al. 1986).

Chau et al. (1993) estimated fractal dimension of beat-to-beat HR and BP of
control subjects and diabetic patients and observed decrease in fractal dimension of
HR in diabetic patients than in healthy subjects. From their study they concluded
heartbeat to show greater fractal features in healthy condition, whereas a low
fluctuation signifies pathology. Evidence of a close non-linear coupling between
the respiratory and cardiovascular system was provided in 1993 by Novak et al.
(1993). Several other authors using a variety (Voss et al. 2009) of non-linear
techniques investigated the interactions and couplings between HR and respiration
and HR and BP, respectively (Parati et al. 1988; Pompi et al. 1998; Baumert et al.
2002; Schwab et al. 2006; Fuchs et al. 2010). Some studies investigated spectral
analysis of HRV in response to the posture changes maneuver and dynamic exercise
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(Yamamoto and Hughson 1991; Butler et al. 1993; Nakamura et al. 1993; Ahmed
et al. 1994; Montano et al. 1994; Radelli et al. 1994; Fei et al. 1995; Tulppo et al.
1996,1998; Tonhajzerov et al. 2002; Pichon et al. 2006). Hughson et al. (1995)
explored harmonic and fractal components of BP variability in heart transplant
patients and in age- and sex-matched healthy people while seated rest, supine rest,
and supine rest with fixed-pace breathing of 12 respirations per minute. In transplant
patients HR was found to be much faster compared to healthy controls. Compared to
supine rest or the supine plus fixed breathing position, RR intervals of healthy
controls were found to be distinctively shorter in upright seated position. In the
transplant patients, in the upright seated position, RR intervals were found to be
significantly shorter compared to in the supine rest position. In control subjects total
power of systolic or diastolic pressure did not differ when BP variability was
analyzed using spectral analysis. Systolic or diastolic pressure in transplant patients
revealed less low-frequency harmonic spectral power and more high-frequency
power in diastolic pressure compared to healthy controls. Compared to healthy
controls, transplant patients showed persistently higher ratio of high-frequency
power in diastolic relative to systolic pressure. Transplant patients and control
subjects both revealed almost same slope of the fractal component of systolic
pressure which was higher than the slope of HR variability (in control subjects)
(Hughson et al. 1995). Shoemaker et al. (2001) conducted a study to test the
hypothesis that sympathetic adjustments to tilt are attenuated in women versus
men leading to diminished blood pressure responses to head-up tilt (HUT). Kuusela
et al. (2002) conducted a study using different non-linear methods to characterize
HR and BP dynamics in healthy subjects at rest. Castellano et al. (2004) measured
blood flow in the carotid and femoral arteries, heart rate, and blood pressure in
response to postural challenge in older adults. Tulppo et al. (2005) reported the
behavior of the alpha-1 during the passive tilt test. The knowledge of physiological
responses induced by autonomic tests is relevant to provide further information
regarding autonomic cardiac regulation and autonomic dysfunction diagnosis
(Ziegler 1994). Though the responses caused by the passive orthostatic test are
elaborated in Tonhajzerov et al. (2002) and Pichon et al. (2006), it was not clear
how long the autonomic nervous system spends to induce sympathetic and para-
sympathetic changes immediately after the change of position.

Špulák et al. (2010) in a study found the correlation coefficients between systolic
BP and parameters computed from ECG and photoplethysmography (PPG) to vary
strongly subject to subject. Corino et al. (2010) using a symbolic distance showed
the short-term dynamics of systolic arterial pressure (SAP) to vary distinctly in rest
and tilt phases, whereas RR dynamics was left unaltered. Pachauri and Mishra
(2012) investigated the phase synchronization between ECG and arterial BP in
order to find the interactions between the two signals. Gesche et al. (2012) in a
work showed that the created pulse wave velocity (PWV) – BP function, including a
one-point calibration – produced significant correlation between BP derived from the
PWV and the systolic BP measured by sphygmomanometer. Ahmad et al. (2012)
presented a method whereby ECG-assisted oscillometric and pulse transit time
(PTT) analyses were seamlessly integrated into the oscillometric BP measurement
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paradigm. The method bolstered oscillometric analysis (amplitude modulation) with
more reliable ECG peaks provided a complementary measure with PTT analysis
(temporal modulation) and fused this information for robust BP estimation. Bishop
et al. (2012) employed the wavelet modulus maxima technique to characterize the
multifractal properties of HR and mean arterial BP physiology retrospectively for
four patients during open abdominal aortic aneurysm repair. Faini et al. (2013)
described changes in day and night fractal dimension (FD) of BP and HR of a
large population. HR and systolic and diastolic BP time series of hypertensive
subjects were obtained from ambulatory blood pressure monitoring (ABPM) during
the day and at night. FD was calculated by Higuchi’s algorithm (FDH) and Katz’s
corrected algorithm (FDc). Standard deviation (SD) was found to decrease signifi-
cantly from day to night for systolic BP (SBP), diastolic BP (DBP), and HR, while
coefficient of variation decreased significantly for HR only. Whereas same FD was
noted for SBP and DBP during the day, while at night changes occurred for DBP
only. Changes in the regulation of vascular resistances at night probably associated
with lying position are represented by the existence of night–day differences only in
the FD of DBP. Further the authors also noted alike trends with FD estimators based
on different algorithms (FDH and FDc). In another study Faini et al. (2014) quantified
mean, SD, and FD at daytime and nighttime of 47 normotensive male volunteers. As
expected they observed mean and SD to decrease from day to night, whereas FD of
SBP increased significantly than SBP at night. FD of HR was observed to be
distinctively lower compared to FD of SBP or DBP. Thus they concluded that fractal
dimension of ambulatory BP may present modern and cutting-edge information of
cardiovascular system. Estrada et al. (2014) with the use of neural networks dem-
onstrated the existence of a relationship between ECG signals and BP. Souza et al.
(2014) aimed to investigate the effects of the posture changes maneuver on fractal
exponents through DFA in young women, as well as the time and frequency domains
indexes of HR. Pujitha et al. (2014) investigated the postural changes in HR and BP
with aging. They concluded that due to stiffening of blood vessels, BP increase with
increase in age, but the postural decrease in systolic BP in standing from lying down
posture was more in elderly subjects. Several other researchers have also investi-
gated the relationship between postural changes and cardiovascular response via the
HR and BP (Ewing et al. 1980; Borst et al. 1982; Pump et al. 1997, 1999, 2001).

Though a very few studies on correlation between ECG and arterial BP (ABP)
due to change in posture have been reported earlier as illustrated in literature, to the
best of our knowledge, no effort has been made to see if there exists any cross-
correlation between the two signals. Heart rate variability and blood pressure
variability are referred to as being capable of foretelling cardiovascular risks (Daw-
son et al. 2000); hence precise measurement and diagnosis of these parameters are
required to avoid mortality. Thus with a motive to understand the correlation
between the two signals, we used a non-linear cross-correlation technique called
multifractal detrended cross-correlation analysis (MF-DXA) proposed by Zhou
(2008) to assess the time series of ECG and ABP. The detail of the method is
provided in Appendix B.
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6.2 Posture-Dependent ECG and Arterial Blood Pressure
(ABP) Data

To explore the cross-correlation between ECG and arterial BP (ABP), we studied the
database of an experiment from website www.physionet.org (www.physionet.org/
physiobank/database/prcp/) for 10 s. The database contains data of ABP and ECG
collected from ten healthy subjects at rest, during rapid tilts, slow tilts, and stand
tests. Out of ten healthy subjects, we have chosen eight healthy subjects for our
study. The mean age of the subjects was 28.7 � 1.2 years, the mean height was
172.8 � 4.0 cm, and the mean weight was 70.6 � 4.5 kg (Heldt et al. 2003).
Participants regularly engaged in light to moderate physical activity and had no
sign of cardiovascular disease. Plot of each of the two signals of ECG and ABP for
2 s is shown in Fig. 6.1a, b.

Fig. 6.1 Plot of (a) ECG and (b) ABP signal for a particular subject for 2 s (Ghosh et al. 2018)
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6.3 Multifractal Cross-Correlation Analysis Between ECG
and ABP Data

Multifractal detrended cross-correlation analysis technique can reveal multifractal
characteristics of two cross-correlated signals and higher-dimensional multifractal
measures. We have applied this technique in our previous works to study the EEG
pattern of epileptic patients (Ghosh et al. 2014) and also to study the human
gait pattern of normal people and patients suffering from Parkinson’s disease
(Dutta et al. 2016).

There are various other recently proposed methods like multifractal cross-
correlation analysis (MF-CCA) used for studying the cross-correlation between
two series. Kwapien et al. (2015) proposed a q-dependent detrended cross-
correlation coefficient ρq, based on the q-dependent fluctuation functions Fq from
MF-DFA and MF-DCCA (Kantelhardt et al. 2002; Oswiecimka et al. 2014), and
showed that the new coefficient is not only able to quantify the strength of correla-
tions but also allows one to identify the range of detrended fluctuation amplitudes in
two signals (Kwapien et al. 2015). Qian et al. (2015) recently used detrended partial
cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross-correla-
tions between two simultaneously recorded time series in the presence of
non-stationarity after removing the effects of other time series acting as common
forces. They analyzed the multifractal binomial measures masked with strong white
noises using multifractal DPXA (MF-DPXA) and found that the MF-DPXA method
quantifies the hidden multifractal nature which the MF-DCCA method fails to do. In
another work Jiang et al. (2017a) proposed a method for characterizing the joint
multifractal nature of long-range cross-correlations and named it joint multifractal
analysis based on wavelet leaders (MF-X-WL). They found the MF-X-WL method
can detect, respectively, the joint multifractality and monofractality in binomial
measures and bivariate fractional Brownian motions, but not with accuracy. Jiang
et al. (2017b) proposed another method called multifractal cross wavelet analysis
(MF-X-WT) which is based on wavelet analysis and is used to characterize the joint
multifractal nature of long-range cross-correlations. Similar to the MF-X-PF
method, the authors introduced two orders in the MF-X-WT ( p, q) method and
assessed its performance by conducting extensive numerical experiments on the dual
binomial measures with multifractal cross-correlations and the bivariate fractional
Brownian motions (bFBMs) with monofractal cross-correlations. On applying the
method to stock market indexes, intriguing joint multifractal nature was observed in
pairs of index returns and volatilities. Since these recently proposed methods are yet
to be applied in different domains, we used MF-DXA as several studies conducted so
far using this technique have proved the robustness of this method.

Multifractal analysis was employed for both ECG and ABP time series. Both the
time series were first transformed to obtain the integrated signal and reduce noise in
the data. The integrated time series was then divided into Ns bins where Ns ¼ int(N/
s), N is the length of the series, and s is the length of the bin. For both the signals, the
range of s was chosen from 10 to N/10 in steps of 1. The qth order fluctuation

158 6 Multifractal Correlation Study Between Posture and Autonomic. . .



function Fq(s) was determined for q¼�10 to +10 in steps of 1. Plot of ln Fq(s) vs. ln
s for a particular subject for both auto- and cross-correlated series of ECG and ABP
is depicted in Fig. 6.2. Power-law scaling of the fluctuation function (Fq(s) vs. s) is
observed for all values of q. Linear dependence of ln Fq on ln s for different values of
q suggests that there exists power-law auto- and cross-correlation between ECG and
ABP signals. The values of cross-correlation scaling exponent λ(q) are obtained
from the slope of linear fit of ln Fq(s) vs. ln s plots. The values of Hurst exponent h
(q ¼ 2) and cross-correlation scaling exponent λ(q ¼ 2) are shown in Table 6.1.
Figure 6.3 shows the relationship between scaling exponent λ(q) and q for a
particular subject. For comparison the relation between h(q) and q obtained using
MF-DFA technique is also shown in the same figure. Dependence of both Hurst
exponent and scaling exponent on q suggests multifractal behavior, i.e., there are
different power-law auto- and cross-correlations. The dependence of the generalized
Hurst exponents h(q), and scaling exponents, λ(q), suggests different scaling of small
and large fluctuations, i.e., the scaling is multifractal. From Fig. 6.3 we can also see
that the value of λ(q) for q < 0 is larger than that of q > 0 for the original series,
whereas for the shuffled series, the exponent is constant. Figure 6.3 portrays the
relation where the cross-correction scaling exponent λ(q) is equal to the average of
the generalized Hurst exponent h(q), i.e., λ(q ¼ 2) � [hx(q ¼ 2)+hy(q ¼ 2)]/2. The
equation is found to be approximately valid in all the cases within the limit of
experimental error. For artificially generated time series, the above relation is valid

Fig. 6.2 Plot of ln Fq vs. ln s (q ¼ 2) for a particular subject (Ghosh et al. 2018)
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for any value of q. However the relation is not valid for any value of q especially for
the negative values of q. In Fig. 6.3 we have also shown the values of bivariate Hurst
exponent Hxy (¼ (hx + hy)/2), i.e., the average of generalized Hurst exponents of
ECG and ABP (Ghosh et al. 2018). Oswiecimka et al. (2014) have shown that the
more the difference between λ(q) and average generalized Hurst exponent, the more
different are the considered multifractals.

In a recent work, Kristoufek (2015a) opined that the bivariate Hurst exponent Hxy

is not necessarily equal to the average of the separate Hurst exponents. He argued
that unless at least one of the series is long-range correlated with h (Hurst expo-
nent) > 0.5, the processes cannot be power-law cross-correlated with Hxy > 0.5. Thus
it is essential for one of the underlying processes to have long-term memory. The
power-law cross-correlations are thus a by-product of the persistent separate pro-
cesses. Ref (Podobnik et al. 2011; Kristoufek 2013, 2015b) describes long-range
cross-correlated processes with analytical results. The author has also argued about
another possibility where Hxy < 1/2 (hx + hy). Sela and Hurvich (2012) referred to
such processes as the anti-cointegration as the separate processes are long-range
correlated but pairwise uncorrelated in a long-term horizon (at low frequencies). In
another work Kristoufek (2016) has given an explanation for the frequently reported
estimated bivariate Hurst exponent Hxy being higher than the average of the separate
Hurst exponents hx and hy, i.e., Hxy > 1/2 (hx + hy). As the Hurst exponent estimation

Fig. 6.3 Plot of h(q) and λ(q) vs. q of original and shuffled series for a particular subject (Ghosh
et al. 2018)
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is unbiased by heavy tails in the univariate setting, the upward bias in the bivariate
setting for heavy tails implies the possibility of Hxy > 1/2 (hx + hy). The author also
argues that one of the possible reasons for reporting Hxy > 1/2 (hx + hy) is a finite
sample bias (Ghosh et al. 2018).

Figure 6.4 depicts the plot of f(α) vs. α. From the figure we can see that for q ¼ 2
the cross-correlation scaling exponent λ(q) is greater than 0.5 which is an indication
that persistent long-range cross-correlation exists among ECG and ABP signals. The
values of h(q) for q ¼ 2 for ECG and ABP are also observed to be greater than 0.5
which also speaks about persistent long-range correlation of the two signals (Ghosh
et al. 2018). This phenomenon has also been observed in our previous studies
(Ghosh et al. 2014; Dutta et al. 2016) as well.

According to the MF-DXA, we consider that each of the two variables at any time
depends not only on its own past values but also on past values of the other variable
(Wang et al. 2013). Thus the existence of power-law cross-correlations among ECG
and ABP suggests that with change in posture, a change in the value of one is
expected to create a subjective influence in change in value of the other. We further
confirm that long-range correlation plays a dominant part in the existence of
multifractal features in ECG and ABP (Ghosh et al. 2018).

Fig. 6.4 Plot of f(α) vs. α of original and shuffled series for a particular subject (Ghosh et al. 2018)
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Values of auto-correlation (γ) and cross-correlation (γx) for ECG and ABP were
estimated and are presented in Table 6.1. The mean along with standard deviation is
also shown in the same table. A lower value of γ indicates a higher degree of
correlation. We have obtained negative values of cross-correlation (γx) for all sub-
jects. Drozdz et al. (2009) have also observed negative values of correlation. Jones
and Kaul (1996) were the first to reveal a stable negative cross-correlation between
oil prices and stock prices. The negative cross-correlations were also found by (Chen
2010; Filis 2010; Berument et al. 2010). It is observed that for Subject 2 both the
degree of auto-correlation and cross-correlation among ECG and ABP is the least
compared to other subjects which may be an indication of complex cardiac condition
in different posture. From Table 6.1 we further observe strong auto-correlation of
ECG and ABP signals for Subject 3 (Ghosh et al. 2018). Significant cross-correlation
between ECG and ABP is also observed for this subject which is in accordance with
findings of Podobnik et al. (2007, 2009) as they showed that if the auto-correlations
are stronger, then the cross-correlations will also be stronger. Table 6.1 also shows
least value of cross-correlation (γx) for Subject 6 indicating strong cross-correlation
between ECG and ABP implying healthy heart condition. Table 6.2 depicts values of
multifractal width of ECG, ABP, and cross-correlated series. Except for Subject
3 the cross-correlated series of all other subjects shows weaker multifractality than
ECG or ABP. The plot of multifractal spectrum for ECG, ABP, and cross-correlation
series for a particular subject is shown in Fig. 6.4. Weaker multifractality is observed
for the cross-correlated series (Ghosh et al. 2018). Our earlier studies have also
reported this phenomenon (Ghosh et al. 2014; Dutta et al. 2016). Wang and Xie
(2012) have also observed this feature. He and Chen also found especially, for the
soy meal, soybean, and corn futures markets, the widths of cross-correlation
multifractal spectra to be narrower than those of separately analyzed China’s and
US soy meal futures markets using the MF-DXA method (He and Chen 2011).
Various studies have reported weaker multifractality of the cross-correlated signal
than the individual signals (Movahed and Hermanis 2008; Zhao et al. 2011). From
Fig. 6.5 we observe the non-linear dependence of classical scaling exponent on q
which is another piece of evidence of multifractality of the original and cross-
correlated ECG and ABP signals.

Further it is very interesting to observe that Subject 2 having highest value of
multifractal width (w) of ECG as shown in Table 6.2 shows lowest degree of cross-
correlation among ECG and ABP pattern (as evident from Table 6.1) which may
serve as a double check on dysfunction of cardiovascular system. Since larger value
of multifractal width (w) is a measure of greater complexity, hence value of w of
ECG in case of Subject 2 may provide an indication of cardiovascular health
dysfunction. Dutta (2010) have also reported larger values of multifractal width of
ECG signals of diseased subjects compared to healthy ones. To ascertain the origin
of multifractality of both the ECG and ABP time series, we randomly shuffled the
series and then analyzed them. Figures 6.3 and 6.4, respectively, depict plots of h(q),
λ(q) vs. q, f(α) vs. α for the original and randomly shuffled series. Both the figures
depict weaker multifractality of the shuffled series (Ghosh et al. 2018).
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Table 6.2 clearly depicts the difference in values of multifractal width of the
original and shuffled series. We observe weaker multifractality for the shuffled series
which implies that both types of multifractality are present, but the more dominant
factor is long-range correlations. Figure 6.5 provides evidence of another piece of
multifractality where we can see non-linear variation of τ(q) vs. q for all the eight
subjects. We further observe from Table 6.3 that all the values of auto-correlation (γ)

Fig. 6.5 Plot of τ(q) vs. q for eight subjects (Ghosh et al. 2018)

Table 6.3 Values of auto-correlation (γ) and cross-correlation (γx) coefficients for ECG and ABP
of shuffled series

Subject γ (ECG) shuffle γ (ABP) shuffle (γx) shuffle

1 0.948 � 0.005 0.976 � 0.004 0.902 � 0.003

2 0.896 � 0.007 0.913 � 0.006 0.871 � 0.004

3 1.036 � 0.004 0.994 � 0.004 1.016 � 0.003

4 0.970 � 0.004 1.063 � 0.004 0.974 � 0.004

5 0.965 � 0.005 0.913 � 0.006 0.894 � 0.006

6 0.963 � 0.005 0.920 � 0.004 0.923 � 0.003

7 1.037 � 0.005 1.009 � 0.004 0.971 � 0.004

8 1.079 � 0.005 0.994 � 0.005 0.902 � 0.006
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and cross- correlation (γx) exponent for the shuffled series is close to 1, indicating all
correlations are destroyed in the shuffling procedure as a value of 1 is indicative of
uncorrelated data (Ghosh et al. 2018).

6.4 Discussion of the Result and Possible Use as Biomarker
of Neurological Disorder

Thus the above analysis of cross-correlation among ECG and ABP in healthy
subjects using MF-DXA methodology reveals important and interesting observa-
tions. This analysis clearly indicates that the change of posture gives rise to auto-
nomic deregulation. This correlation between autonomic deregulation and ECG is of
course subjective; in some cases the impact of change of posture is compatibly
higher. Another important feature is that the subject having the lowest impact
possesses more complex ECG pattern as evident from multifractal widths. It should
be noted that the subject chosen were all young having age around 28 years. Since
these types of data of older people are not available, we are not in a position to assess
age-dependent impact of posture. Nevertheless this data will serve as basis of
comparison of impact at older age which in future should be a subject of great
concern. Further this analysis may be platform to develop a sensitive and rigorous
biomarker for assessment of cardiovascular responses to change in posture inducing
autonomic deregulation. Appropriate user-friendly electronic gadget may be devel-
oped and used extensively. The possibility of using this method in the domain of
orthostatic syndrome seen post flight is another interesting area of research. Finally
this work presents for the first time information about heart condition in different
posture from the perspective of chaos and fractality yielding results of high
precision.
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Appendices

Appendix A

Multifractal Detrended Fluctuation Analysis (MF-DFA)

Multifractal detrended fluctuation analysis was proposed by Kantelhardt et al. (2002)
for the study of nonstationary time series which are affected by trends or cannot be
normalized. This method, which aims to identify the scaling behavior of the fluctu-
ations of the time series for different qth order moments, is based on the detrended
fluctuation analysis (Peng et al. 1994). The method is detailed below:

First let us consider x(i) for i ¼ 1, ............, N, to be a nonstationary time series of
length N. The mean of the above series is given by

xave ¼ 1
N

XN
i¼1

x ið Þ ð1Þ

Assuming x(i) to be the increments of a random walk process around the average,
the trajectory can be obtained by integration of the signal.

Y ið Þ ¼
Xi

k¼1

x kð Þ � xave½ �for i ¼ 1 . . . . . .N ð2Þ

The level of measurement noise present in experimental records and the finite
data are also reduced by the integration thereby dividing the integrated time series
into Ns nonoverlapping bins, where Ns¼ int (N/s) where s is the length of the bin. As
N is not a multiple of s, a small portion of the series is left at the end. Again, to
include that left part, the entire process is repeated in a similar way starting from the
opposite end, leaving a small portion at the beginning. Hence, 2Ns bins are obtained
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altogether, and for each bin least sqaure fit of the series is done followed by
determination of the variance.

F2 s; νð Þ ¼ 1
s

Xs

i¼1

Y ν� 1ð Þsþ i½ � � yν ið Þf g2

ð3Þ

For each bin ν, ν ¼ 1 ........ Ns and

F2 s; νð Þ ¼ 1
s

Xs

i¼1

Y N � ν� Nsð Þsþ i½ � � yν ið Þf g2 ð4Þ

For ν¼ Ns + 1........, 2Ns, where yν (i) is the least sqaure fitted value in the bin ν. In
our research work, we have performed a least sqaure linear fit (MF-DFA �1). The
study can also be extended to higher orders by fitting quadratic, cubic, or higher-
order polynomials.

The qth order fluctuation function Fq(s) is obtained after averaging over 2Ns bins:

Fq sð Þ ¼ 1=2Ns

X2Ns

ν¼1

F2 s; ν
�q
2

� �h i( )1=q

ð5Þ

where q is an index which can take all possible values except zero, as the factor 1/q
becomes infinite with zero value. The procedure can be repeated by varying the
value of s. With the increase in the value of s, Fq(s) increases, and for the long-range
power correlated series, Fq(s) shows power-law behavior:

Fq sð Þ / sh qð Þ

If such a scaling exists, lnFq will depend linearly on s with slope h(q). In general,
the exponent h(q) depends on q. For a stationary time series, h(2) is identical with the
Hurst exponent H. h(q) is said to be the generalized exponent. The value of h
(0) cannot be obtained directly, because Fq blows up at q¼ 0. Fq cannot be obtained
by normal averaging procedure; instead a logarithmic averaging procedure is
applied.

F0 sð Þ � exp 1=4Ns

X2Ns

ν¼1

ln F2 s; νð Þ� �( ) e sh 0ð Þ ð6Þ

A monofractal time series is characterized by unique h(q) for all values of q. If
small and large fluctuations scale differently, then h(q) will depend on q, or in other
words the time series is multifractal. Kantelhardt et al. (2003) have explained that the
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values of h(q) for q < 0 will be larger than that for q > 0. A typical plot of h(q) vs. q is
shown in Fig. 1.

The generalized Hurst exponent h(q) of MF-DFA is related to the classical scaling
exponent τ(q) by the relation:

τ qð Þ ¼ qh qð Þ � 1 ð7Þ

A typical plot of τ(q) vs. q is shown in Fig. 2.
A monofractal series with long-range correlation is characterized by linearly

dependent q- order exponent τ(q) with a single Hurst exponent H. Multifractal
signals have multiple Hurst exponent, and τ(q) depends non-linearly on
q (Ashkenazy et al. 2003a). The singularity spectrum f(α) is related to τ(q) by
Legendre transform (Parisi and Frisch 1985).

/¼ dτ
dq

f /ð Þ ¼ q / �τ qð Þ

where α is the singularity strength or Holder exponent and f(α) specifies the
dimension of the subset series that is characterized by α. Using Eq. (7) we can
write α and f(α) in terms of h(q)

Fig. 1 Plot of h(q) vs. q
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/¼ h qð Þ þ qh0 qð Þ ð8Þ
f /ð Þ ¼ q / �h qð Þ½ � þ 1 ð9Þ

In general, the singularity spectrum quantifies the long-range correlations prop-
erty of the time series (Ashkenazy et al. 2002). The multifractal spectrum is capable
of providing information about the relative importance of various fractal exponents
in the time series, e.g., the width of the spectrum denotes range of exponents. A
quantitative characterization of the spectra can be done by least square fitting it to
quadratic function (Shimizu et al. 2002) around the position of maximum α0:

f /ð Þ ¼ A / �/0ð Þ2 þ B / �/0ð Þ þ C ð10Þ

where C is an additive constant, C ¼ f(α0) ¼ 1, B indicates the asymmetry of the
spectrum, and is zero for a symmetric spectrum. The width of the spectrum can be
obtained by extrapolating the fitted curve to zero. WidthW is defined asW¼ α1 – α2
with f(α1) ¼ f(α2) ¼ 0. It has been proposed by some workers (Ashkenazy et al.
2003b) that the width of the multifractal spectrum is a measure of the degree of
multifractality. Singularity strength or Holder exponent α and the dimension of
subset series f(α) can be obtained from relations 8 and 9. For a monofractal series,
h(q) is independent of q. Hence from relations 8 and 9, it is evident that there will be
a unique value of α and f(α), the value of α being the generalized Hurst exponent H

Fig. 2 Plot of τ(q) vs. q
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and the value of f(α) being 1. Hence the width of the spectrum will be zero for a
monofractal series. The more the width, the more multifractal is the spectrum. A
sample plot of multifractal spectrum is depicted in Fig. 3.

The auto-correlation exponent γ can be estimated from the relation given below
(Kantelhardt et al. 2001; Movahed and Hermanis 2008):

γ ¼ 2� 2 hð Þ q ¼ 2ð Þ ð11Þ

For uncorrelated or short-range correlated data, h(2) is expected to have a value of
0.5, while a value greater than 0.5 is expected for long-range correlations. Therefore
for uncorrelated data, γ has a value of 1, and the lower the value, the more correlated
is the data.

Multifractality may be of two types: (i) “due to broad probability density function
for the values of time series and (ii) due to different long-range correlation for small
and large fluctuation.” To ascertain the origin of multifractality, the time series is
randomly shuffled and then analyzed. While shuffling the values are arranged
randomly so that all correlations are destroyed. The shuffled series will exhibit
non-multifractal scaling if multifractality is due to long-range correlation, and if it
is due to broad probability density, then, the original h(q) dependence is not
changed, h(q) ¼ hshuf(q). “But if both kinds of multifractality are present in a
given series, then the shuffled series will show weaker multifractality than the
original one” (Kantelhardt et al. 2002).

Fig. 3 Plot of f(α) vs. α
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Appendix B

Multifractal Detrended Cross-Correlation Analysis (MF-DXA)

In 2008, Zhou (2008), extended the detrended cross-correlation analysis (DXA)
method to multifractal detrended cross-correlation analysis (MF-DXA), an advanced
version of the DXA method to investigate multifractal behavior between two time
series in one or higher dimensions that are recorded simultaneously. The MF-DXA
method is a combination of multifractal analysis and detrended cross-correlation
analysis and is based on the order detrended covariance (Campillo and Paul 2003;
Cottet et al. 2004; Podobnik et al. 2009). Just same as the MF-DFA method,
MF-DXA consists of the four steps.

Let us suppose two nonstationary time series x(i) and y(i) for i ¼ 1. . .. . . .N of
length N. The means of the above series’ are given by

xavg ¼ 1
N

XN
i¼1

x ið Þ & yavg ¼
1
N

XN
i¼1

y ið Þ ð12Þ

The profiles of the underlying data series x(i) and y(i) are computed as

X ið Þ �
Xi

k¼1

x kð Þ � xavg
� �

for i ¼ 1 . . . . . .N:

Y ið Þ �
Xi

k¼1

y kð Þ � yavg
� �

for i ¼ 1 . . . . . .N ð13Þ

The integration also reduces the level of measurement noise present in experi-
mental records and finite data. Each of the integrated time series is divided to Ns

nonoverlapping bins where Ns ¼ int(N/s) where s is the length of the bin. Now since
N is not a multiple of s, a short part of the series is left at the end. So in order to
include this part of the series, the entire process is repeated starting from the opposite
end thus leaving a short part at the beginning thus obtaining 2Ns bins. For each bin,
least sqaure linear fit is performed, and the fluctuation function is given by

F s; νð Þ ¼ 1
s

Xs

i¼1

Y ν� 1ð Þsþ i½ � � yν ið Þf g � X ν� 1ð Þsþ i½ � � xν ið Þf g

for each bin ν,ν ¼ 1,. . .. . . . Ns and
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F s; νð Þ ¼ 1
s

Xs

i¼1

Y N � ν� Nsð Þsþ i½ � � yν ið Þf g � X N � ν� Nsð Þsþ i½ � � xν ið Þf g

for ν ¼ Ns+1,. . .. . . .0.2Ns, where xν(i) and yν(i) are the least sqaure fitted values in
the bin ν.

The qth order detrended covariance Fq(s) is obtained after averaging over 2Ns

bins.

Fq sð Þ ¼ 1
2Ns

X2Ns

ν¼1

F s; νð Þ½ �q=2
( )1=q

ð14Þ

where q is an index which can take all possible values except zero because in that
case the factor 1/q blows up. The procedure can be repeated by varying the value of
s. Fq(s) increases with increase in value of s. If the series is long-range power
correlated, then Fq(s) will show power-law behavior:

Fq sð Þ / sλ qð Þ

If such a scaling exists, ln Fq will depend linearly on ln s, with λ(q) as the slope.
Scaling exponent λ(q) represents the degree of the cross-correlation between the two
time series. In general the exponent λ(q) depends on q. We cannot obtain the value of
λ(0) directly because Fq blows up at q ¼ 0. Fq cannot be obtained by the normal
averaging procedure; instead a logarithmic averaging procedure is applied:

F0 sð Þ � exp
1

4Ns

X2Ns

ν¼1

ln F s; νð Þ½ �
( )esλ 0ð Þ ð15Þ

For q ¼ 2 the method reduces to standard DXA.
F(s, ν) may obtain negative values in general. To eliminate the problem in

evaluation of fluctuation functions which may be complex valued for different
values of q, we have taken the modulus of F(s, ν) to eliminate the negative values.
However, Oswiecimka et al. (2014) proposed an alternative more rigorous method
multifractal cross-correlation analysis (MFCCA) to take care of the negative values
in cross covariances. The authors suggest that the proposed method is a more natural
generalization of DCCA compared to MF-DXA. It prohibits losing information that
is stored in the negative cross-covariance. The method is yet to be tested in various
systems.

If scaling exponent λ(q) is independent of q, the cross-correlations between two
time series are monofractal; on the other hand if λ(q) depends on q, the cross-
correlations between two time series are multifractal. Furthermore, for positive q,
λ(q) describes the scaling behavior of the segments with large fluctuations, and for
negative q, λ(q) describes the scaling behavior of the segments with small
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fluctuations. Scaling exponent λ(q) represents the degree of the cross-correlation
between the two time series x(i) and y(i). The value λ(q)¼ 0.5 denotes the absence of
cross-correlation. λ(q) > 0.5 indicates persistent long-range cross-correlations where
a large value in one variable is likely to be followed by a large value in another
variable, while the value λ(q) < 0.5 indicates anti-persistent cross-correlations where
a large value in one variable is likely to be followed by a small value in another
variable and vice versa (Movahed and Hermanis 2008; Shadkhoo and Jafari 2009).

Zhou (2008) found that for two time series constructed by binomial measure from
p model, there exists the following relationship between scaling exponent and Hurst
exponent:

λ q ¼ 2ð Þ � hx q ¼ 2ð Þ þ hy q ¼ 2ð Þ� �
=2 ð16Þ

Podobnik and Stanley have studied the above relation for monofractal
autoregressive fractional integral moving average (ARFIMA) signals and EEG
time series (Podobnik and Stanley 2008; Shadkhoo and Jafari 2009). Zhou has
shown that the above relation holds for any q for multifractal random walks
(MRW) and binomial measures generated from the p model (Mars and Lopes da
Silva 1983; Hajian and Movahed 2010). However, there are also examples in which
the above relation does not exist for all values of q, such as daily price changes for
DJIA and NASDAQ indices (Podobnik and Stanley 2008; Shadkhoo and Jafari
2009), but for q ¼ 2 it is still correct (Podobnik and Stanley 2008; Shadkhoo and
Jafari 2009). The other example is the case of two time series generated by using two
uncoupled ARFIMA processes, each of both is auto-correlated, but there is no
power-law cross-correlation with a specific exponent (Podobnik and Stanley 2008;
Shadkhoo and Jafari 2009).

According to auto-correlation function given by

C τð Þ ¼ x iþ τð Þ � xh i½ � x ið Þ � xh i½ �h ieτ�γ ð17Þ

Hajian and Movahed (2010) introduced the cross-correlation function as

Cx τð Þ ¼ x iþ τð Þ � xh i½ � y ið Þ � yh i½ �h ieτ�γx ð18Þ

where γ and γx are the auto-correlation and cross-correlation exponents, respectively.
Due to the non-stationarities and trends superimposed on the collected data, direct
calculation of these exponents is usually not recommended; rather the reliable
method to calculate auto-correlation exponent is theDFAmethod, namely, γ¼ 2� 2h
(q ¼ 2) (Kantelhardt et al. 2001; Movahed and Hermanis 2008). Podobnik and
Stanley (2008) have demonstrated the relation between cross-correlation exponent,
γx, and scaling exponent λ(q) derived by Eq. (15) according to γx ¼ 2 � 2λ(q ¼ 2).
For uncorrelated data, γx has a value of 1, and the lower the value of γ and γx, the
more correlated is the data.
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In general, λ(q) depends on q, indicating the presence of multifractality. In other
words, we want to point out how two series are cross-correlated in various time
scales. To clarify this correlation, we generalize the singularity spectrum, f(α),
concept to two cross-correlated series. This generalized concept gives useful infor-
mation about the distribution of the degree of cross-correlation in different time
scales. The way to characterize multifractality of cross-correlation between two
series is to relate via a λ(q) Legendre transform, as in the case of one series (Peitgen
et al. 1992; Wang et al. 2012).

α ¼ λ qð Þ þ qλ0 qð Þ ð19Þ
f αð Þ ¼ q α� λ qð Þ½ � þ 1 ð20Þ

Here, α is the singularity strength or Hölder exponent, while f(α) denotes the
dimension of the subset of the series that is characterized by α. Unique Hölder
exponent denotes monofractality, while in the multifractal case, the different parts of
the structure are characterized by different values of α, leading to the existence of the
spectrum f(α). The width of the spectrum can be obtained by extrapolating the fitted
curve to zero. Width W is defined as

W ¼ α1 � α2 ð21Þ

with f(α1) ¼ f(α2) ¼ 0. The growth of the width of f(α) shows the increase in the
degree of multifractality of two coupled signals.
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