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1 	 | 	 INTRODUCTION

Epilepsy	 can	 begin	 at	 any	 age	 across	 the	 lifespan.	
Although	many	epilepsy	syndromes	typically	begin	in	the	
neonate,	infant,	or	child,	and	there	has	been	greater	em-
phasis	on	syndrome	identification	at	these	ages,	there	are	
several	important	syndromes	that	begin	at	a	variable	age	
where	patient	outcomes	can	be	improved	by	their	prompt	
recognition.	The	purpose	of	 this	paper	 is	 to	define	these	
epilepsy	 syndromes.	 The	 methodology	 employed	 by	 the	
International	 League	 Against	 Epilepsy	 (ILAE)	 Nosology	
and	 Definitions	 Taskforce	 (2017–	2021)	 in	 defining	 what	
an	 epilepsy	 syndrome	 is,	 and	 their	 grouping	 by	 age	 at	
onset,	is	described	in	detail	by	Wirrell	et	al.1	An	epilepsy	
syndrome	 is	 defined	 as	 a	 characteristic	 cluster	 of	 clini-
cal	 and	 electroencephalographic	 (EEG)	 features,	 often	
supported	by	specific	etiological	 findings	 (structural,	ge-
netic,	metabolic,	immune,	and	infectious).	The	diagnosis	
of	a	 syndrome	 in	an	 individual	with	epilepsy	 frequently	
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Abstract
The	goal	of	this	paper	is	to	provide	updated	diagnostic	criteria	for	the	epilepsy	
syndromes	 that	have	a	variable	age	of	onset,	based	on	expert	consensus	of	 the	
International	 League	 Against	 Epilepsy	 Nosology	 and	 Definitions	 Taskforce	
(2017–	2021).	 We	 use	 language	 consistent	 with	 current	 accepted	 epilepsy	 and	
seizure	 classifications	 and	 incorporate	 knowledge	 from	 advances	 in	 genetics,	
electroencephalography,	and	imaging.	Our	aim	in	delineating	the	epilepsy	syn-
dromes	that	present	at	a	variable	age	is	to	aid	diagnosis	and	to	guide	investiga-
tions	for	etiology	and	treatments	for	these	patients.

K E Y W O R D S

epilepsy	with	reading-	induced	seizures,	focal	epilepsy	syndromes,	mesial	temporal	lobe	
epilepsy	with	hippocampal	sclerosis,	progressive	myoclonus	epilepsies,	Rasmussen	syndrome

Key Points
•	 The	 International	 League	 Against	 Epilepsy	

presents	a	classification	and	definitions	for	epi-
lepsy	syndromes	that	begin	at	a	variable	age

•	 Syndromes	 that	 begin	 at	 a	 variable	 age	 can	
begin	both	in	those	aged	≤18 years	and	in	those	
aged	≥19 years

•	 Syndromes	can	be	broadly	divided	into	general-
ized,	focal,	and	combined	generalized	and	focal	
epilepsy	syndromes

•	 Some	syndromes	can	be	associated	with	devel-
opmental	 and/or	 epileptic	 encephalopathy	 in	
children	or	with	progressive	neurological	dete-
rioration	if	they	begin	later	in	life

•	 Examples	 of	 etiology-	specific	 epilepsy	 syn-
dromes	are	discussed
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carries	prognostic	and	treatment	implications.	Syndromes	
often	 have	 age-	dependent	 presentations	 and	 a	 range	 of	
specific	 comorbidities.	 A	 syndrome	 has	 a	 "variable	 age"	
of	onset	if	it	can	begin	both	in	those	aged	≤18 years	and	
in	those	aged	≥19 years	(i.e.,	 in	both	pediatric	and	adult	
patients).	Epilepsy	syndromes	that	typically	only	begin	in	
the	neonate,	infant,	or	child	are	covered	elsewhere.2,3

The	 epilepsy	 syndromes	 presenting	 at	 a	 variable	 age	
(Figure	1)	are	broadly	divided	into	the	following	groups:

•	 Generalized	 epilepsy	 syndromes,	 with	 polygenic	 eti-
ologies:	 three	 of	 the	 idiopathic	 generalized	 epilepsies	
(IGEs—	juvenile	 absence	 epilepsy	 [JAE],	 juvenile	 my-
oclonic	 epilepsy	 [JME],	 and	 epilepsy	 with	 generalized	
tonic–	clonic	seizures	alone	[GTCA]).4

•	 Self-	limited	 focal	 epilepsy	 syndromes	 with	 presumed	
complex	 inheritance:	 childhood	 occipital	 visual	 epilepsy	
(COVE)	and	photosensitive	occipital	lobe	epilepsy	(POLE).

•	 Focal	 epilepsy	 syndromes	 with	 genetic,	 structural,	 or	
genetic–	structural	etiologies:	 sleep-	related	hypermotor	
(hyperkinetic)	 epilepsy	 (SHE),	 familial	 mesial	 tempo-
ral	lobe	epilepsy	(FMTLE),	familial	focal	epilepsy	with	
variable	 foci	 (FFEVF),	and	epilepsy	with	auditory	fea-
tures	(EAF).

•	 A	 combined	 generalized	 and	 focal	 epilepsy	 syndrome	
with	polygenic	etiology:	epilepsy	with	reading-	induced	
seizures	(EwRIS).

•	 Epilepsy	syndromes	with	developmental	encephalopa-
thy	 (DE),	 epileptic	 encephalopathy	 (EE),	 or	 both,	 and	
epilepsy	syndromes	with	progressive	neurological	dete-
rioration:1	progressive	myoclonus	epilepsies	(PME)	and	
febrile	infection-	related	epilepsy	syndrome	(FIRES)

In	this	paper,	we	also	provide	definitions	for	two	etiology-	
specific	 epilepsy	 syndromes1	 that	 have	 seizure	 onset	 at	
a	 variable	 age,	 while	 acknowledging	 that	 more	 etiology-	
specific	epilepsy	syndromes	may	be	defined	in	the	future:

•	 Mesial	temporal	lobe	epilepsy	with	hippocampal	sclero-
sis	(MTLE-	HS).

•	 Rasmussen	syndrome	(RS).

Although	 the	 above	 grouping	 of	 syndromes	 is	 em-
ployed	in	this	paper,	it	is	worth	noting	that	this	can	be	ap-
plied	flexibly.	For	example,	some	patients	with	SHE	(e.g.,	
those	with	KCNT1	pathogenic	gene	variants)	can	be	con-
sidered	to	have	a	DE,	where	their	neurocognitive	impair-
ments	 are	 caused	 by	 the	 epilepsy	 etiology.	 Patients	 with	

F I G U R E  1  The	epilepsy	syndromes	that	begin	at	a	variable	age	grouped	by	epilepsy	type	and	whether	they	are	associated	with	
developmental	and/or	epileptic	encephalopathy	(D	and/or	EE)	or	progressive	neurological	deterioration.	Some	patients	with	the	focal	
epilepsy	syndromes	MTLE-	HS,	SHE,	and	FFEVF	may	have	cognitive,	neurologic,	or	psychiatric	impairment	related	to	their	etiology	or	
epilepsy	(D	and/or	EE).	All	patients	with	established	PME	(a	combined	generalized	and	focal	epilepsy	syndrome)	and	FIRES	and	RS	(focal	
epilepsy	syndromes)	will	have	D	and/or	EE	or	progressive	neurological	impairment.	The	authors	note	that	other	epilepsy	syndromes	may	be	
identified	in	the	future
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1446 |   RINEY et al.

RS	or	MTLE-	HS	can	have	an	EE,	as	demonstrated	by	im-
provement	 of	 neurocognitive	 impairments	 by	 successful	
epilepsy	surgery.	Patients	with	PME	may	initially	present	
with	 a	 generalized	 epilepsy	 syndrome,	 indistinguishable	
from	 JME,	 before	 developing	 progressive	 neurological	
deterioration,	 when	 this	 syndrome	 can	 be	 diagnosed.	
Therefore,	how	epilepsy	syndromes	presenting	at	a	vari-
able	age	are	categorized	depends	on	the	clinical	presenta-
tion	and	evolution	in	specific	patients.

The	nomenclature	for	each	syndrome	has	been	chosen	
to	 reflect	 the	 key	 features	 of	 the	 electroclinical	 pheno-
type	(such	as	mandatory	seizure	type)	and/or	the	etiology	
where	this	is	important	for	syndrome	diagnosis.	Thus,	the	
syndrome	name	reflects	the	characteristic	seizures	in	JAE,	
JME,	GTCA,	SHE,	FMTLE,	EAF,	MTLE-	HS,	EwRIS,	and	
PME.	The	 terms	FFEVF	and	FMTLE	reflect	 the	 familial	
nature	of	these	focal	epilepsy	syndromes.	Although	there	
has	been	a	move	away	from	the	use	of	syndromes	named	
after	individuals,	the	term	RS	has	been	retained.	The	Task	
Force	was	unable	to	propose	an	alternative	for	this	well-	
established	name	that	encompasses	the	epilepsy,	distinct	
imaging	features,	and	progressive	neurological	deteriora-
tion	seen	in	this	condition.1 Whereas	Rasmussen	enceph-
alitis	 had	 been	 the	 prevalent	 term	 in	 historic	 published	
literature,	the	Task	Force	preferred	the	prospective	use	of	
the	term	RS.	Where	the	term	"pathogenic"	has	been	used	
referring	 to	 gene	 variants	 causing	 specific	 syndromes,	
we	acknowledge	that	"likely	pathogenic"5	variants	in	the	
same	gene	could	also	cause	the	syndrome.	In	addition	to	
providing	definitions	 for	each	syndrome,	 the	Task	Force	
also	provides	criteria	for	defining	the	"syndrome	without	
laboratory	 confirmation"	 (Tables	 3–	10).1  This	 describes	
the	minimum	criteria	for	syndrome	diagnosis,	to	be	used	
only	 in	 resource-	limited	 regions	 where	 there	 is	 little	 or	
no	access	 to	EEG,	 imaging,	or	genetic	studies.	For	some	
syndromes,	diagnosis	is	still	possible	with	modified	(e.g.,	
computed	 tomography	 [CT]	 instead	 of	 magnetic	 reso-
nance	imaging	[MRI],	video	of	seizures)	or	no	investiga-
tion.	For	some	syndromes,	the	Task	Force	acknowledges	
that	diagnosis	is	not	possible	in	this	setting.

2 	 | 	 DEFINITIONS OF EPILEPSY 
SYNDROMES THAT BEGIN AT A 
VARIABLE AGE

2.1	 |	 Generalized epilepsy syndromes 
with polygenic etiology

2.1.1	 |	 Idiopathic	generalized	epilepsies

The	 most	 frequent	 epilepsies	 that	 begin	 in	 adolescence	
and	 adulthood	 are	 IGEs,	 namely	 JAE,	 JME,	 and	 GTCA.	

The	IGEs	are	a	subgroup	of	genetic	generalized	epilepsies	
(GGEs)	that	have	particular	epidemiological	importance,	
as	it	is	estimated	that	15%–	20%	of	all	persons	with	epilepsy	
have	an	IGE.6	For	this	reason,	the	IGE	syndromes,	includ-
ing	 those	 presenting	 at	 a	 variable	 age	 (JAE,	 JME,	 and	
GTCA)	are	presented	in	a	separate	paper	by	Hirsch	et	al.4

2.2	 |	 Self- limited focal epilepsy 
syndromes with presumed complex 
inheritance

Self-	limited	 focal	 epilepsies	 (SeLFEs)	 account	 for	 up	 to	
25%	of	all	pediatric	epilepsies.3 They	have	age-	dependent	
onset	 and	 remission,	 characteristic	 seizure	 semiologies,	
specific	 EEG	 features	 (with	 normal	 EEG	 background),	
are	 drug-	responsive,	 and	 cognition	 is	 typically	 normal.	
The	etiology	is	genetic,	supported	by	a	higher	incidence	of	
epilepsy	in	families	and	familial	predisposition	to	the	EEG	
trait.	However,	no	genes	have	been	identified,	and	the	eti-
ology	 is	 presumed	 complex	 inheritance	 at	 a	 susceptible	
age.	Rare	cases	show	overlap	with	the	IGEs.	SeLFEs	pre-
dominantly	 begin	 in	 childhood,	 but	 two	 syndromes	 can	
begin	at	a	variable	age:	COVE	and	POLE.	Although	remis-
sion	is	expected	in	these	syndromes,	it	may	not	occur	in	
all	patients.	COVE	is	characterized	by	frequent	brief	focal	
aware	 sensory	 seizures	 with	 visual	 phenomena	 during	
wakefulness,	often	followed	by	headache.	Onset	up	to	age	
19	years	has	been	described.7 The	EEG	shows	a	normal	
background	with	interictal	occipital	sharp-		or	spike-	and-	
wave,	seen	mainly	in	sleep.	Remission	occurs	in	50%–	80%	
of	 patients	 within	 2–	7  years	 after	 onset	 with	 or	 without	
administration	of	antiseizure	medication	(ASM).8,9	POLE	
is	 characterized	 by	 photic-	induced	 focal	 aware	 sensory	
seizures	with	visual	phenomena.	Onset	in	adulthood	has	
been	described.10 There	is	a	strong	female	predominance.	
The	 EEG	 shows	 normal	 background,	 with	 interictal	 oc-
cipital	 spike-		 or	 polyspike-	and-	wave,	 facilitated	 by	 eye	
closure	and	intermittent	photic	stimulation.	Generalized	
spike-	and-	wave	can	also	be	seen.	Both	COVE	and	POLE	
are	discussed	in	greater	detail	in	a	separate	paper	on	epi-
lepsy	syndromes	that	begin	in	childhood.3

2.3	 |	 Focal epilepsy syndromes with  
genetic, structural, or genetic– structural  
etiologies

The	 group	 of	 focal	 epilepsy	 syndromes	 presenting	 at	 a	
variable	 age	 includes	 a	 number	 of	 syndromes	 that	 have	
been	 adapted	 from	 previous	 ILAE	 Commission	 re-
ports.11  These	 syndromes	 are	 SHE,	 FMTLE,	 FFEVF,	
and	 EAF.	 "Autosomal	 dominant	 nocturnal	 frontal	 lobe	
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epilepsy"	 has	 been	 renamed	 SHE	 to	 reflect	 current	 un-
derstanding	 that	 this	 syndrome	 includes	 characteristic	
motor	seizure	types	(hyperkinetic	seizures	and/or	motor	
seizures	 with	 tonic/dystonic	 features),	 predominantly	
from	 sleep,	 and	 that	 these	 can	 be	 of	 extrafrontal	 onset.	
A	wider	range	of	etiologies	 is	now	associated	with	these	
syndromes,	 derived	 from	 advances	 in	 imaging,	 genetic,	
and	EEG	investigations.	Thus,	where	relevant,	these	syn-
dromes	have	been	expanded	to	encompass	both	structural	
and	genetic	etiologies	that	may	result	in	the	same	electro-
clinical	presentation.	The	Task	Force	considered	whether	
other	disorders	that	result	in	seizures	with	characteristic	
clinical	and	EEG	features	implicating	specific	focal	brain	
networks	should	be	considered	epilepsy	syndromes.	The	
Task	 Force	 decided	 to	 include	 definitions	 only	 for	 the	
focal	epilepsy	syndromes	presented	in	this	paper	but	ac-
knowledges	that	some	other	focal	epilepsies	(e.g.,	insular,	
anterior	cingulate,	occipital)	may	meet	the	agreed	defini-
tion	of	an	epilepsy	syndrome.

Helpful	for	diagnosis	of	most	of	these	focal	epilepsy	
syndromes	is	their	distinct	seizure	semiology	(Table	1).	
The	 typical	 seizure	 semiology	 of	 the	 hyperkinetic	 sei-
zures	 occurring	 during	 sleep	 in	 SHE	 or	 the	 focal	 sen-
sory	 auditory	 seizures	 in	 EAF	 suggest	 the	 syndrome	
diagnosis	and	help	target	investigations	to	specific	brain	
regions	 and	 genetic	 etiologies.	 The	 diagnosis	 of	 some	
of	 these	 syndromes	 requires	 careful	 review	 of	 family	
history.	Pathogenic	variants	in	several	genes	have	been	
identified	as	causing	these	syndromes	(Table	2),	which	
may	 be	 inherited,	 arise	 de	 novo,	 or	 be	 due	 to	 somatic	
pathogenic	gene	variants.	Family	history	may	be	missed	
due	to	reduced	penetrance,	variable	severity	and	semi-
ology	 of	 seizures,	 and	 misdiagnosis	 in	 affected	 family	
members.12,13	 If	 family	 members	 have	 focal	 aware	 sei-
zures	 (e.g.,	 auditory	 symptoms,	 déjà	 vu,	 or	 brief	 noc-
turnal	 motor	 events	 alone),	 these	 may	 not	 have	 been	
identified	as	seizures,	unless	family	members	are	asked	
by	 a	 clinician	 who	 is	 aware	 of	 their	 significance.	 In	
some	 families,	 only	 detailed	 study	 of	 all	 affected	 indi-
viduals	 with	 clinical,	 EEG,	 and	 imaging	 phenotyping	
(e.g.,	 excluding	 family	 members	 with	 acquired	 struc-
tural	brain	abnormality),	 together	with	genetic	 investi-
gation,	 will	 allow	 a	 confident	 diagnosis	 of	 the	 specific	
familial	focal	epilepsy	syndrome.14	Diagnosis	can	be	fur-
ther	complicated	by	the	same	pathogenic	gene	variants	
causing	different	focal	epilepsy	syndromes	(e.g.,	patho-
genic	variants	in	DEPDC5 have	been	identified	in	SHE,	
FMTLE,	and	FFEVF).	The	epilepsy	syndrome	diagnosed	
in	a	family	may	therefore	depend	on	whether	all	family	
members	can	be	confirmed	to	have	the	same	phenotype	
(e.g.,	SHE,	FMTLE,	EAF)	or	whether	 there	 is	different	
focal	 seizure	 semiology	 seen	 in	 affected	 individuals	 in	
the	family	(FFEVF).T
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2.3.1	 |	 Sleep-	related	hypermotor	
(hyperkinetic)	epilepsy

SHE	 (Table	 3)	 is	 characterized	 by	 clusters	 of	 motor	 sei-
zures	occurring	 from	sleep.	Seizures	are	abrupt	 in	onset	
and	 offset,	 and	 typically	 brief	 (<2  min),	 with	 preserved	
awareness	and	a	stereotyped	hyperkinetic	or	asymmetric	
dystonic/tonic	 motor	 pattern.	 This	 epilepsy	 syndrome,	
particularly	if	associated	with	a	structural	brain	abnormal-
ity	or	 specific	gene	 (e.g.,	KCNT1),	 can	be	drug-	resistant.	
SHE	encompasses	and	replaces	the	previous	epilepsy	syn-
dromes	 of	 hypnogenic–	nocturnal	 paroxysmal	 dystonia–	
epilepsy,	 nocturnal	 frontal	 lobe	 epilepsy	 (NFLE),	 and	
autosomal	 dominant	 NFLE,	 and	 includes	 genetic	 and	
structural	 etiologies.15–	20  Although	 the	 name	 "sleep-	
related	hypermotor	epilepsy"	is	the	term	used	in	recent	lit-
erature	for	this	syndrome,15,20–	24	the	Task	Force	notes	that	
"hyperkinetic"	 rather	 than	 "hypermotor"	 is	 the	currently	

accepted	 term	 for	 the	 focal	 motor	 seizure	 with	 vigorous	
movement	that	can	be	seen	in	this	syndrome.25 The	Task	
Force	agreed	that	the	name	for	this	syndrome	could	be	ei-
ther	"sleep-	related	hyperkinetic	epilepsy"	or	"sleep-	related	
hypermotor	epilepsy,"	as	some	patients	may	have	hyper-
kinetic	 seizures	 alone,	 but	 others	 may	 have	 focal	 motor	
seizures	with	tonic/dystonic	features.

Epidemiology
SHE	is	a	rare	syndrome,	with	an	estimated	prevalence	of	
the	nonfamilial	form	in	the	adult	population	of	1.8–	1.9	per	
100 000.21,22

Clinical context
Age	at	seizure	onset	is	mostly	in	the	first	2	decades	of	life,	
typically	 in	 adolescence	 (11–	14  years),	 but	 has	 ranged	
from	2 months	to	64 years.13,21,26,27 There	is	a	slight	male	
sex	predominance.21 Neurological	examination	is	normal.	

Focal epilepsy 
syndrome Related genes

SHE CHRNA4, CHRNA2, CHRNB2, DEPDC5, KCNT1, NPRL2, NPRL3, 
PRIMA1

FMTLE DEPDC5	(Mendelian	inheritance	is	rare,	FMTLE	typically	displays	
complex	inheritance)

FFEVF TSC1, TSC2, DEPDC5, NPRL2, NPRL3

EAF LGI1, RELN, MICAL1

Abbreviations:	EAF,	epilepsy	with	auditory	features;	FFEVF,	familial	focal	epilepsy	with	variable	foci;	
FMTLE,	familial	mesial	temporal	lobe	epilepsy;	SHE,	sleep-	related	hypermotor	(hyperkinetic)	epilepsy.

T A B L E  2 	 Genetic	focal	epilepsy	
syndromes	and	genes	currently	implicated

T A B L E  3 	 Core	diagnostic	criteria	for	sleep-related	hypermotor	(hyperkinetic)	epilepsy

Mandatory Alerta Exclusionary

Seizures Brief	focal	motor	seizures	with	
hyperkinetic	or	asymmetric	
tonic/dystonic	features	occurring	
predominantly	from	sleep

Seizures	predominantly	from	the	awake	
state

Seizures	only	during	wakefulness
Generalized	onset	seizures

EEG Frequent	epileptiform	abnormality	
outside	of	the	frontal	regions

Generalized	epileptiform	abnormality

Age	at	onset <10	or	>20 years <2 months	or	>64 years

Development	
at	onset

Moderate	to	severe	intellectual	disability

Neurological	
exam

Focal	neurological	examination	
abnormalities

An	MRI	is	not	required	for	diagnosis	but	should	be	done	to	evaluate	for	underlying	etiology.
An	ictal	EEG	is	not	required	for	diagnosis.

Syndrome	without	laboratory	confirmation:	In	resource-	limited	regions,	SHE	can	be	diagnosed	if	other	mandatory	and	exclusionary	
criteria	are	met,	and	the	patient	has	witnessed	or	video-	recorded	hyperkinetic	seizures	during	sleep.

Abbreviations:	EEG,	electroencephalogram;	MRI,	magnetic	resonance	imaging;	SHE,	sleep-	related	hypermotor	(hyperkinetic)	epilepsy.
aAlert	criteria	are	absent	in	the	vast	majority	of	cases,	but	rarely	can	be	seen.	Their	presence	should	result	in	caution	in	diagnosing	the	syndrome	and	
consideration	of	other	conditions.
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Perinatal	 history,	 developmental	 milestones,	 and	 cogni-
tion	are	typically	normal.	Intellectual	disability	and	neu-
ropsychiatric	or	behavior	disorders	have	been	reported	in	
SHE.23,28,29

Course of illness
The	course	of	SHE	is	predominantly	related	to	the	underly-
ing	etiology.21 Most	patients	have	normal	intellect	and	nor-
mal	imaging,	and	respond	to	first-	line	ASMs.30 Patients	with	
intellectual	disability,	neurological	or	imaging	abnormality,	
or	 seizures	 in	 wakefulness	 are	 less	 likely	 to	 achieve	 sus-
tained	 seizure	 remission.21,30	 Epilepsy	 surgery,	 in	 selected	
etiologies,	 may	 be	 effective.	 The	 best	 surgical	 outcome	 is	
seen	when	the	etiology	is	a	well-	defined	structural	pathol-
ogy,	especially	focal	cortical	dysplasia	(FCD)	type	IIb.31

Seizures
Focal	motor	seizures	with	vigorous	hyperkinetic	or	asym-
metric	tonic/dystonic	features	are	seen,	usually	with	auto-
nomic	 signs	 (tachycardia,	 tachypnea,	 irregular	 respiratory	
rhythm),	 vocalization,	 and	 negative	 emotional	 expres-
sion	such	as	fear.24 There	may	be	head	and	eye	deviation.	
Hyperkinetic	 movements	 involve	 proximal	 limb	 or	 axial	
muscles,	producing	 irregular	 large	amplitude	movements,	
such	 as	 pedaling,	 pelvic	 thrusting,	 jumping,	 thrashing,	 or	
rocking	 movements.25	 Focal	 motor	 seizures	 may	 be	 sub-
tle	 clinically	 (previously	 termed	 "paroxysmal	arousals")	or	
may	 have	 longer	 duration	 and	 greater	 complexity	 (such	
as	 "epileptic	 wandering").13  Patients	 may	 describe	 a	 focal	
aware	 sensory	 or	 cognitive	 seizure	 before	 the	 motor	 fea-
tures	commence.	Focal	to	bilateral	tonic–	clonic	seizures	can	
occur.13,21,30 Although	occurrence	of	seizures	from	sleep	is	
characteristic	 of	 this	 syndrome,	 seizures	 from	 the	 awake	
state	 occur	 in	 27%–	45%	 of	 patients	 at	 some	 time	 in	 their	
life.13,21,26

Electroencephalogram
The	EEG	background	is	typically	normal.	The	awake	EEG	
is	nonepileptiform	in	most	(50%–	90%)	patients.13	During	
sleep,	 interictal	epileptiform	abnormalities	are	seen	over	
the	frontal	areas	in	approximately	50%	of	patients	(Figure	
2A).13	Ictal	EEG	may	not	show	definitive	ictal	patterns,	be	
obscured	by	movement	artifact,	or	show	evolving	sharp-		
or	spike-	and-	wave	discharges,	rhythmic	slow	activity,	or	
diffuse	 background	 flattening	 over	 frontal	 areas	 (Figure	
2B).	Postictal	focal	slowing	may	be	seen.	Prolonged	video–	
EEG	recording	is	the	best	diagnostic	test	to	identify	events	
with	stereotyped	semiology	from	sleep	to	confirm	the	di-
agnosis,	 especially	 in	 cases	 without	 a	 clear	 surface	 ictal	
EEG	correlate.	Intracranial	EEG	recordings	(e.g.,	stereo-	
EEG)	 have	 demonstrated	 that	 ictal	 discharges	 may	 start	
in	various	extrafrontal	areas	(insulo-	opercular,	temporal,	
and	parietal	cortices).24,32–	34

Imaging
Neuroimaging	 is	 usually	 normal.	 Occasionally,	 a	 struc-
tural	 brain	 abnormality	 is	 found,	 most	 commonly	 FCD	
(Figure	 2C)	 but	 also,	 less	 commonly,	 an	 acquired	 struc-
tural	pathology.20

Genetics
The	etiology	of	SHE	may	be	genetic,	genetic–	structural,	or	
acquired.	Family	history	should	be	carefully	sought,	but	
is	 not	 expected	 in	 sporadic	 or	 acquired	 SHE.30	 Familial	
SHE	is	usually	inherited	in	an	autosomal	dominant	fash-
ion	 (autosomal	 dominant	 SHE	 [ADSHE]),	 with	 a	 pene-
trance	of	approximately	70%.26	A	pathogenic	gene	variant	
is	 found	 in	 approximately	 19%	 of	 ADSHE	 and	 in	 7%	 of	
sporadic	SHE.15	Genetic	causes	of	ADSHE	include	patho-
genic	variants	in	GATOR1	complex	genes	(DEPDC5,	less	
frequently	NPRL2	or	NPRL3),16–	19	in	acetylcholine	recep-
tor	subunit	genes	(CHRNA4,	 less	 frequently	CHRNB2	or	
CHRNA2),35–	37	 and	 in	 the	 sodium-	activated	 potassium	
channel	 gene	 KCNT1.28	 Individuals	 with	 GATOR	 com-
plex	 pathogenic	 gene	 variants	 may	 have	 FCD,	 with	 im-
plications	for	epilepsy	surgery.15	Individuals	with	KCNT1	
pathogenic	variants	have	a	more	severe	form	of	SHE,	with	
intellectual	 disability,	 psychosis,	 and	 sometimes	 regres-
sion,28,29	and	higher	penetrance	in	families.	Rare	families	
with	autosomal	recessive	SHE	are	described,	and	patho-
genic	 variants	 in	 PRIMA1  have	 been	 identified	 in	 one	
family.38

Differential diagnoses
•	 Non-	rapid	 eye	 movement	 (REM)	 parasomnias:	

Patients	 with	 SHE	 may	 be	 misdiagnosed	 as	 having	
parasomnias,	often	for	some	time	before	the	epilepsy	
is	 recognized.39	 Seizures	 in	 SHE	 are	 typically	 brief	
(<2 min),	with	abrupt	onset/offset,	have	stereotyped	
motor	features	from	seizure	to	seizure,	and	can	occur	
nightly	with	clustering	through	the	night	(from	sleep	
onset	 to	 the	 early	 morning),	 and	 there	 is	 often	 pre-
served	 awareness	 during	 the	 seizure.	 Parasomnias	
are	 longer	 in	 duration	 (>10  min),	 have	 variable	 fea-
tures	from	event	to	event,	and	are	less	frequent,	often	
singular	in	a	night,	and	prominent	1–	2 h	after	falling	
asleep;	the	patient	is	confused	during	the	event,	with	
no	memory	of	it	afterward.

•	 Psychogenic	nonepileptic	seizures	(PNES):	Patients	with	
SHE	 may	 be	 misdiagnosed	 as	 having	 PNES,	 because	
they	 may	 have	 preserved	 awareness	 in	 the	 presence	
of	 bilateral	 movements	 during	 their	 seizures,	 and	 the	
ictal	EEG	may	not	show	definitive	 ictal	patterns.	SHE	
may	be	differentiated	from	PNES	by	the	stereotyped	hy-
perkinetic	 features,	 brevity,	 and	 clustering	 of	 seizures	
through	the	night	from	sleep,	whereas	events	in	PNES	
are	less	stereotyped	and	occur	during	wakefulness.
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1450 |   RINEY et al.

•	 REM	behavior	disorder:	This	is	a	REM	parasomnia	that	
begins	 usually	 later	 in	 life	 (>50  years).	 Hyperkinetic	
movements	are	not	stereotyped	and	correspond	to	vivid	
dreaming.

•	 FFEVF:	Whereas	seizures	compatible	with	SHE	can	occur	
in	an	individual	in	a	family	with	FFEVF,	familial	SHE	is	
distinguished	from	FFEVF	by	all	affected	individuals	in	
the	family	having	seizures	compatible	with	SHE.14

•	 Other	 focal	 seizures	 occurring	 predominantly	 from	
sleep:	These	do	not	have	the	characteristic	hyperkinetic	
or	asymmetric	tonic/dystonic	features	seen	in	SHE.

2.3.2	 |	 Familial	mesial	temporal	
lobe	epilepsy

FMTLE	 (Table	 4)	 is	 a	 common	 focal	 epilepsy	 syndrome	
with	a	complex	mode	of	inheritance,	typically	with	onset	
in	adolescence	or	adulthood.40 The	syndrome	is	generally	
associated	with	focal	aware	seizures	with	semiology	refer-
rable	 to	 the	 mesial	 temporal	 lobe,	 especially	 prominent	
déjà	vu.	Patients	have	a	normal	MRI,	and	seizures	respond	
to	 treatment.	 Some	 families	 have	 also	 been	 described	
that	 have	 a	 clinically	 heterogeneous	 form	 of	 FMTLE,	

F I G U R E  2  Interictal	epileptiform	activity	in	an	8-	year-	old	boy	with	sleep-	related	hypermotor	(hyperkinetic)	epilepsy.	(A)	
Electroencephalogram	shows	repetitive	spiking	over	the	anterior	regions	of	the	left	hemisphere	with	phase	reversals	at	F3	and	F7	
electrodes	(boxes).	(B)	A	hyperkinetic	seizure	during	non-	rapid	eye	movement	sleep	in	the	same	boy.	The	tracing	is	almost	masked	by	
muscle	artifact	due	to	movement.	It	is	possible	to	see	a	leading	sharp	wave	followed	by	fast	activity	(ellipse)	in	the	left	frontal	region.	(C)	
Magnetic	resonance	imaging	shows	a	subtle	band	heterotopia	in	the	subcortical	white	matter	of	the	left	frontal	lobe,	seen	as	a	linear	signal	
abnormality,	isointense	to	overlying	cortex,	running	in	an	anterior–	posterior	direction	in	the	white	matter	(arrow),	which	is	subtly	brighter	
on	this	T2	image	compared	to	the	same	area	in	the	right	frontal	lobe	(box)
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comprising	antecedent	 febrile	 seizures,	MRI	evidence	of	
hippocampal	 atrophy,	 and	 a	 less	 favorable	 response	 to	
ASMs.41,42

Epidemiology
It	 has	 been	 estimated	 that	 FMTLE	 accounts	 for	 almost	
one	fifth	of	newly	diagnosed	cases	of	nonlesional	mesial	
temporal	 lobe	 epilepsy.43	 Because	 of	 its	 mild	 and	 subtle	

features,	FMTLE	is	often	unrecognized	without	directed	
questioning	of	relatives.

Clinical context
Age	 at	 seizure	 onset	 varies	 between	 3	 and	 63  years,	
with	 symptoms	 usually	 starting	 in	 adolescence	 or	
adulthood.40,44	 A	 female	 predominance	 has	 been	 re-
ported.40,44,45	 Individuals	 with	 FMTLE	 generally	 have	

T A B L E  4 	 Core	diagnostic	criteria	for	familial	mesial	temporal	lobe	epilepsy

Mandatory Alerta Exclusionary

Seizures Focal	cognitive	(particularly	déjà	vu),	
sensory,	or	autonomic	seizures

Generalized	onset	seizures

EEG Generalized	epileptiform	
abnormality

Development	at	onset Intellectual	disability

Neurological	exam Focal	abnormalities	on	neurological	
examination

Imaging Normal	or	hippocampal	atrophy/
sclerosis

Other	studies:	genetics,	
etc.

Family	history	of	individuals	with	
focal	seizures	that	arise	from	the	
mesial	temporal	lobe

An	MRI	is	required	for	diagnosis	to	exclude	other	causes.
An	ictal	EEG	is	not	required	for	diagnosis.

Syndrome	without	laboratory	confirmation:	In	resource-	limited	regions,	MRI	is	required	to	exclude	other	structural	etiologies.

Abbreviations:	EEG,	electroencephalogram;	MRI,	magnetic	resonance	imaging.
aAlert	criteria	are	absent	in	the	vast	majority	of	cases,	but	rarely	can	be	seen.	Their	presence	should	result	in	caution	in	diagnosing	the	syndrome	and	
consideration	of	other	conditions.

T A B L E  5 	 Core	diagnostic	criteria	for	familal	focal	epilepsy	with	variable	foci

Mandatory Alerta Exclusionary

Seizures Focal	onset	seizures Generalized	onset	seizures

EEG Generalized	epileptiform	
abnormality

Age	at	onset Neonatal	onset

Development	at	onset Moderate	to	profound	intellectual	
disability

Neurological	exam Focal	neurological	examination	
abnormalities

Imaging Normal	or	focal	cortical	dysplasia

Other	studies:	
genetics,	etc.

Family	history	of	individuals	with	
focal	seizures	that	arise	from	
cortical	regions	that	differ	between	
family	members

Family	history	of	focal	seizures	
that	occur	exclusively	before	
20 months	of	age

An	MRI	is	required	for	diagnosis.	Family	history	of	focal	seizures	might	be	incidental,	due	to	an	acquired	cause.
An	ictal	EEG	is	not	required	for	diagnosis.

Syndrome	without	laboratory	confirmation:	In	resource-	limited	regions,	FFEVF	can	be	diagnosed	without	EEG	in	a	patient	if	other	
mandatory	and	exclusionary	criteria	are	met.	However,	an	MRI	or	CT	is	required	to	exclude	other	structural	etiologies.

Abbreviations:	CT,	computed	tomography;	EEG,	electroencephalogram;	FFEVF,	familial	focal	epilepsy	with	variable	foci;	MRI,	magnetic	resonance	imaging.
aAlert	criteria	are	absent	in	the	vast	majority	of	cases,	but	rarely	can	be	seen.	Their	presence	should	result	in	caution	in	diagnosing	the	syndrome	and	
consideration	of	other	conditions.
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normal	 intellectual	development	and	no	associated	neu-
rological	 abnormalities.	 A	 history	 of	 febrile	 seizures	 is	
uncommon	in	patients	with	the	typical	presentation	but	
may	be	present	in	patients	with	the	more	severe,	and	often	
drug-	resistant,	phenotype.

Course of illness
In	 cohorts	 diagnosed	 in	 first	 seizure	 clinics	 and	 with	 a	
proactive	 investigation	of	 family	members,	FMTLE	typi-
cally	displays	a	favorable	prognosis.40 Many	affected	indi-
viduals	consider	their	déjà	vu	experiences	as	physiological	

T A B L E  6 	 Core	diagnostic	criteria	for	epilepsy	with	auditory	features

Mandatory Alerta Exclusionary

Seizures Focal	sensory	auditory	seizures	and/
or	focal	cognitive	seizures	with	
receptive	aphasia

Generalized	onset	seizures
Other	focal	onset	seizures

EEG Generalized	epileptiform	abnormality

Development	at	
onset

Moderate	or	severe	intellectual	
disability

Neurological	
exam

Focal	neurological	examination	
abnormalities

Imaging Normal	or	focal	cortical	dysplasia

An	MRI	is	required	for	diagnosis	to	exclude	other	causes.
An	ictal	EEG	is	not	required	for	diagnosis.

Syndrome	without	laboratory	confirmation:	In	resource-	limited	regions,	MRI	is	required	to	exclude	other	structural	etiology.

Abbreviations:	EEG,	electroencephalogram;	MRI,	magnetic	resonance	imaging.
aAlert	criteria	are	absent	in	the	vast	majority	of	cases,	but	rarely	can	be	seen.	Their	presence	should	result	in	caution	in	diagnosing	the	syndrome	and	
consideration	of	other	conditions.

T A B L E  7 	 Core	diagnostic	criteria	for	mesial	temporal	lobe	epilepsy	with	hippocampal	sclerosis

Mandatory Alerta Exclusionary

Seizures Focal	aware	or	impaired	awareness	
seizures	with	initial	semiology	
referable	to	medial	temporal	lobe	
networks	(see	text)

Initial	semiology	referable	to	networks	
other	than	mesial	temporal	(e.g.,	throat	
discomfort,	clonic	or	dystonic	movements,	
somatic	sensory	symptoms,	hyperkinetic	
activity,	visual	symptoms,	auditory	
symptoms,	laughter)

Generalized	onset	seizures

EEG Consistent	lack	of	temporal	epileptiform	
abnormality,	despite	repeated	EEGs

Generalized	epileptiform	abnormality
High-	amplitude,	centrotemporal	spikes	with	

horizontal	dipole
Interictal	epileptiform	abnormality	or	focal	

slowing	outside	of	the	temporal	regions	or	
over	the	posterior	temporal	region

Recorded	seizures	with	
generalized	onset

EEG	seizures	recorded	with	
onset	in	regions	outside	
the	temporal	lobe

Age	at	onset <2 years

Development	at	
onset

Moderate	to	severe	intellectual	disability

Neurological	
exam

Focal	neurological	findings	such	as	
hemiparesis	(excluding	facial	asymmetry)

Imaging Hippocampal	sclerosis	(unilateral	or	
bilateral)	on	MRI

An	MRI	documenting	hippocampal	sclerosis	is	required	for	diagnosis.
An	ictal	EEG	is	not	required	for	diagnosis.

Syndrome	without	laboratory	confirmation:	In	resource-	limited	regions,	an	MRI	is	required	for	confirmation	of	diagnosis.

Abbreviations:	EEG,	electroencephalogram;	MRI,	magnetic	resonance	imaging.
aAlert	criteria	are	absent	in	the	vast	majority	of	cases,	but	rarely	can	be	seen.	Their	presence	should	result	in	caution	in	diagnosing	the	syndrome	and	
consideration	of	other	conditions.
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phenomena,	 and	 thus	 do	 not	 seek	 medical	 attention.	 In	
such	cases,	seizures	have	little	or	no	impact	on	daily	rou-
tines.	Diagnosis	is	often	triggered	by	appearance	of	a	focal	
to	 bilateral	 tonic–	clonic	 seizure,	 inquiry	 into	 previous	
unrecognized	 seizures,	 and	 ascertainment	 of	 potentially	
affected	relatives.43	Individuals	with	mild	manifestations	
may	not	require	drug	treatment.	When	treatment	is	indi-
cated,	most	patients	achieve	seizure	freedom	on	their	ini-
tially	prescribed	ASM,	few	require	polytherapy,	and	only	
exceptionally	 is	 epilepsy	 surgery	 required.40	 In	 cohorts	
identified	 in	 a	 specialized	 assessment	 setting	 because	 of	
drug	 resistance	 or	 presurgical	 evaluation,	 the	 course	 of	
epilepsy	is	less	favorable,	with	more	frequent	seizures	and	
need	 for	 epilepsy	 surgery.41,46	 Seizure	 outcomes	 in	 indi-
viduals	requiring	epilepsy	surgery	do	not	appear	to	differ	
from	patients	with	sporadic	MTLE.47

Seizures
Patients	 typically	 present	 with	 focal	 aware	 seizures	
mainly	consisting	of	intense	déjà	vu,	which	is	reported	by	
>70%	 of	 affected	 individuals.	 Manifestations	 commonly	
associated	with	déjà	vu	include	dreamy	perceptions,	fear	
or	 panic,	 slow	 motion,	 visual	 or	 auditory	 illusions,	 and	
autonomic	manifestations	 (a	 rising	visceral	or	epigastric	
sensation,	nausea,	tachycardia,	sweating,	flushing,	or	pal-
lor).40,44 These	seizures	may	progress	to	impaired	aware-
ness,	or	rarely	 to	bilateral	 tonic–	clonic	seizures.	 In	most	
patients	 with	 the	 typical	 form	 of	 FMTLE,	 seizures	 are	
mild	and	occur	infrequently.40

Electroencephalogram
In	approximately	60%	of	affected	individuals,	the	EEG	is	
normal	or	shows	mild	temporal	slowing.40,43 The	remain-
ing	cases	show	interictal	temporal	epileptiform	abnormal-
ity,	more	often	unilateral.	Focal	epileptiform	abnormalities	
may	be	activated	by	sleep	in	some	individuals.44

Imaging
Patients	with	the	typical	presentation	show	no	overt	MRI	
abnormalities.40 The	presence	of	hippocampal	atrophy	or	
increased	T2 signal	is	generally	associated	with	poorer	re-
sponsiveness	to	medical	treatment.41,42

Genetics
Evidence	for	a	genetic	etiology	is	provided	by	the	obser-
vation	of	a	high	concordance	in	monozygotic	twins	com-
pared	 with	 dizygotic	 twins.44  The	 syndrome	 occurs	 in	
relatives	 of	 probands	 with	 a	 lower	 frequency	 than	 that	
predicted	by	dominant	Mendelian	models,	and	in	only	a	
minority	of	families	is	the	frequency	compatible	with	re-
cessive	inheritance.40	Based	on	these	findings,	FMTLE	is	
conceptualized	mainly	as	a	genetic	syndrome	with	com-
plex	(either	polygenic	or	multifactorial)	inheritance.	Rare	

families	 displaying	 Mendelian	 inheritance	 with	 patho-
genic	variants	in	DEPDC5 have	been	reported.48

Differential diagnoses
•	 FFEVF:	Whereas	 seizures	compatible	with	MTLE	can	

occur	 in	 an	 individual	 in	 a	 family	 with	 FFEVF,	 for	
FMTLE	to	be	diagnosed,	all	affected	individuals	in	the	
family	must	have	seizures	compatible	with	MTLE.

•	 MTLE	with	structural	brain	abnormality:	Patients	with	
FMTLE	 have	 a	 family	 history	 of	 individuals	 with	 sei-
zures	 compatible	 with	 MTLE	 and	 who	 do	 not	 have	
structural	brain	abnormalities	on	MRI,	except	 for	rare	
cases	with	hippocampal	atrophy/sclerosis.

•	 Physiological	déjà	vu:	Physiological	déjà	vu	differs	from	
epileptic	déjà	vu	in	that	it	is	typically	mild,	fleeting,	rare	
(yearly	or	less),	does	not	occur	in	clusters,	is	not	associ-
ated	with	other	features	(including	progression	to	other	
seizure	types),	and	is	often	precipitated	by	specific	cir-
cumstances	(e.g.,	visiting	a	new	place,	performing	spe-
cific	actions).43

2.3.3	 |	 Familial	focal	epilepsy	with	
variable	foci

FFFEVF	(Table	5)	is	an	autosomal	dominant	familial	focal	
epilepsy	syndrome,	with	incomplete	penetrance,	charac-
terized	 by	 focal	 seizures	 arising	 from	 different	 cortical	
regions	 (most	 commonly	 frontal	 or	 temporal)	 in	 differ-
ent	family	members	with	variable	severity,	but	with	every	
individual	 in	a	 family	having	a	single	 focal	seizure	type.	
This	syndrome	was	previously	known	as	"familial	partial	
epilepsy	 with	 variable	 foci"	 and	 "autosomal	 dominant	
partial	epilepsy	with	variable	foci."12,14	Etiologies	include	
genetic	and	structural	causes.	Most	cases	are	 responsive	
to	 ASMs.	 In	 appropriately	 selected	 patients	 with	 drug-	
resistant	 seizures	 and	 FCD,	 epilepsy	 surgery	 may	 result	
in	full	remission.	Surgical	assessment	and	counseling	may	
be	informed	by	identification	of	specific	genetic	etiologies,	
for	example,	a	pathogenic	gene	that	infers	risk	of	multiple	
dysplasias.

Epidemiology
There	are	no	epidemiological	studies	of	the	prevalence	of	
this	epilepsy	syndrome.	It	is	considered	rare.

Clinical context
Age	at	seizure	onset	is	typically	in	the	first	to	second	dec-
ade	(peak	=	12–	13.5 years)	but	has	a	wide	range	even	in	the	
same	family,	ranging	from	1 month	to	52 years.12,14 There	
is	no	reported	sex	predominance.	Antecedent,	birth,	and	
neonatal	 history	 is	 typically	 normal.	 Neurological	 ex-
amination	 is	 normal.	 Early	 developmental	 milestones,	
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intellect,	 and	 cognition	 are	 typically	 normal,	 although	
mild	intellectual	disability	and	neuropsychiatric	features	
including	autism	spectrum	disorder	and	behavioral	disor-
ders	have	been	reported.49,50

Course of illness
Most	cases	are	responsive	to	ASMs;	however,	drug	resistance	
rates	may	be	up	to	30%.51	Epilepsy	surgery,	in	selected	cases,	
may	be	effective	and	result	in	full	remission	of	seizures.52

Seizures
Focal	seizures	occur,	with	semiology	depending	on	the	focal	
network	 involved	 in	 the	 individual.	 Every	 affected	 indi-
vidual	in	a	family	typically	has	one	focal	seizure	type.	Focal	
cognitive,	sensory,	autonomic,	or	motor	seizures	have	been	
described.	 Seizures	 can	 arise	 from	 sleep,	 wakefulness,	 or	
both.	Focal	to	bilateral	tonic–	clonic	seizures	may	occur.

Electroencephalogram
The	EEG	background	is	normal.	The	interictal	EEG	usu-
ally	 shows	 focal	 epileptiform	 abnormalities	 (frontal,	
temporal,	centroparietal	more	 than	occipital).14	 In	every	
affected	 individual	 in	 a	 family,	 this	 focal	 area	 remains	
constant	over	time.	Epileptiform	abnormality	is	enhanced	
by	 sleep	 deprivation	 and	 sleep.	 Ictal	 EEG	 demonstrates	
focal	ictal	patterns	related	to	the	focal	brain	network	in-
volved	in	the	individual.

Imaging
Neuroimaging	may	be	normal	or	may	show	FCD	(which	
may	be	subtle).16,52

Genetics
The	 etiology	 of	 FFEVF	 may	 be	 genetic	 or	 genetic–	
structural	with	co-	occurring	FCD	(typically	FCD	type	II).52		
Inheritance	is	autosomal	dominant	with	incomplete	pen-
etrance.14,53 Pathogenic	variants	in	DEPDC5,	NPRL2,	and	
NPRL3  have	 been	 identified.	 Some	 families	 with	 patho-
genic	 variants	 in	 TSC1	 or	 TSC2  meet	 criteria	 for	 this	
syndrome.

Differential diagnoses
•	 Familial	SHE:	Whereas	nocturnal	 seizures	compatible	

with	SHE	are	common	in	 individuals	 in	 families	with	
FFEVF,14	for	this	syndrome,	all	affected	individuals	in	
the	family	must	have	seizures	compatible	with	SHE.	A	
predominance	of	awake	seizures	is	also	a	useful	distinc-
tion	between	FFEVF	and	SHE.14

•	 FMTLE:	For	 this	syndrome,	all	affected	 individuals	 in	
the	family	must	have	seizures	compatible	with	MTLE.

•	 Familial	 EAF:	 For	 this	 syndrome,	 all	 affected	 individ-
uals	in	the	family	must	have	seizures	compatible	with	
EAF.

2.3.4	 |	 Epilepsy	with	auditory	features

EAF	(Table	6)	is	a	focal	epilepsy	syndrome	that	presents	
in	adolescence/adulthood	without	any	antecedent	history	
and	 is	 characterized	 by	 focal	 aware	 seizures	 with	 audi-
tory	 symptoms	 and/or	 receptive	 aphasia.	 Patients	 rarely	
may	have	focal	to	bilateral	tonic–	clonic	seizures.	Some	pa-
tients	have	seizures	precipitated	by	specific	sounds.	This	
syndrome	was	previously	known	as	autosomal	dominant	
lateral	 temporal	 lobe	 epilepsy	 and	 autosomal	 dominant	
partial	epilepsy	with	auditory	features.	EAF	may	occur	as	
a	familial	focal	epilepsy	syndrome,	familial	EAF	(FEAF),	
which	may	be	inherited	in	an	autosomal	dominant	fash-
ion	 (autosomal	 dominant	 EAF	 [ADEAF])	 with	 reduced	
penetrance.

Epidemiology
The	prevalence	of	this	syndrome	is	unknown.

Clinical context
Age	 at	 seizure	 onset	 is	 typically	 10–	30  years	 (range	 =			
.5–	54  years).54  There	 is	 no	 reported	 sex	 predominance.	
Antecedent,	birth,	and	neonatal	history	is	typically	normal.	
Neurological	 examination	 is	normal.	Early	developmental	
milestones	and	intellect/cognition	are	typically	normal.

Course of illness
Seizure	 outcomes	 can	 range	 from	 mild	 seizures	 with	
spontaneous	 remission	 to	 highly	 drug-	resistant	 sei-
zures.	Those	with	structural	lesions	may	be	treated	sur-
gically.54  The	 cumulative	 rate	 of	 seizure	 remission	 in	
those	 followed	 for	at	 least	5	consecutive	years	was	ap-
proximately	50%	by	30 years	from	epilepsy	diagnosis.54	
Predictors	 of	 poor	 long-	term	 outcome	 are	 early	 age	 at	
onset	 (<10  years),	 focal	 epileptiform	 abnormality	 on	
interictal	EEG,	and	focal	aware	cognitive	seizures	with	
complex	auditory	hallucinations.54

Seizures
Focal	aware	sensory	(auditory)	and/or	cognitive	(recep-
tive	aphasia)	seizures	are	mandatory	for	this	syndrome.	
Auditory	 sensory	symptoms	 typically	consist	of	 simple	
unformed	sounds	(e.g.,	humming,	buzzing,	or	ringing),	
or	 less	 commonly	 auditory	 distortions	 (such	 as	 altera-
tion	in	volume)	or	complex	sounds	(e.g.,	specific	songs	
or	voices).	Ictal	receptive	aphasia	consists	of	an	inabil-
ity	 to	 understand	 spoken	 language	 in	 the	 absence	 of	
an	 impairment	 of	 awareness.	 Additional	 focal	 seizure	
symptoms	can	occur,	including	vision	alteration	(distor-
tions	 of	 faces/objects)	 and	 vertigo.55,56	 Focal	 impaired	
awareness	 and	 focal	 to	 bilateral	 tonic–	clonic	 seizures	
(often	from	sleep)	may	occur.	The	focal	aware	seizures	
may	not	have	been	appreciated	as	epileptic	until	 these	
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seizures	occur;	therefore,	careful	history	is	important	to	
elicit	 a	 history	 of	 these	 prior	 seizure	 types.	 Reflex	 sei-
zures	 precipitated	 by	 sound	 (e.g.,	 a	 ringing	 telephone)	
occur	in	some	patients.54

Electroencephalogram
The	 interictal	EEG	 is	normal	 in	most	patients.	 If	an	ab-
normality	 is	 seen,	 this	 is	 characterized	 by	 focal	 (usually	
temporal)	 sharp-	and-	wave	 or	 spikes;	 these	 may	 also	 be	
widespread.54 The	EEG	may	be	activated	by	hyperventi-
lation,	sleep	deprivation,	and	sleep.	Ictal	EEG	recordings	
are	rarely	reported.

Imaging
Neuroimaging	 is	 usually	 normal,	 but	 rarely	 a	 structural	
etiology	may	be	found.55

Genetics
EAF	mostly	occurs	sporadically,	although	FEAF	also	oc-
curs,	and	has	autosomal	dominant	inheritance	(ADEAF)	
with	 incomplete	 penetrance.54  Pathogenic	 variants	 (or	
microdeletions)	in	LGI1	(epitempin)	or	RELN	account	for	
approximately	half	of	ADEAF	cases.57–	60 Pathogenic	gene	
variants	in	MICAL1	are	a	rarer	cause.59 Pathogenic	vari-
ants	in	DEPDC5,	CNTNAP2,	and	SCN1A	have	also	been	
reported.61

Differential diagnoses
•	 FFEVF:	 Whereas	 seizures	 compatible	 with	 EAF	 can	

occur	 in	 an	 individual	 in	 a	 family	 with	 FFEVF,	 for	
FEAF	 to	 be	 diagnosed,	 all	 affected	 individuals	 in	 the	
family	must	have	seizures	compatible	with	EAF.

•	 Psychiatric	disorders:	Auditory	hallucinations	are	eas-
ily	distinguished	from	EAF	by	the	more	chronic	nature	
and	complexity	of	psychiatric	auditory	hallucinations.

•	 Tinnitus:	 This	 disorder	 is	 common	 and	 thus	 may	 be	
coincidentally	 present	 in	 the	 patient's	 family.	 This	 is	
distinguished	 from	 focal	 sensory	 auditory	 seizures	 by	
the	usually	 longer	duration	of	 tinnitus	 in	disorders	of	
the	 peripheral	 auditory	 system,	 and	 the	 presence	 of	
other	features	of	seizures	accompanying	ictal	auditory	
sensations.

2.4	 |	 Etiology- specific 
epilepsy syndromes

Etiology-	specific	 epilepsy	 syndromes	 can	 be	 identified	
when	 there	 is	an	etiology	 for	 the	epilepsy	 that	 is	associ-
ated	with	a	clearly	defined,	relatively	uniform	and	distinct	
clinical	 phenotype	 in	 most	 affected	 individuals	 (clini-
cal	 presentation,	 seizure	 types,	 comorbidities,	 course	 of	
illness,	 and/or	 response	 to	 specific	 therapies),	 as	 well	

as	 consistent	 EEG,	 neuroimaging	 and/or	 genetic	 cor-
relates.1  Two	 etiology-	specific	 epilepsy	 syndromes	 that	
begin	at	a	variable	age	are	discussed	in	this	section.	Future	
work	 may	 expand	 on	 the	 definitions	 of	 more	 etiology-	
specific	epilepsy	syndromes.	This	may	aid	earlier	clinical	
recognition	of	some	autoimmune	or	metabolic	(e.g.,	glu-
cose	transporter	1	deficiency)	etiologies	that	benefit	from	
prompt	targeted	treatment.

2.4.1	 |	 Mesial	temporal	lobe	epilepsy	with	
hippocampal	sclerosis

MTLE	is	a	frequent	focal	epilepsy	in	adults,	although	it	
also	 presents	 in	 childhood.	 Although	 many	 contribut-
ing	 factors	 can	 lead	 to	 HS,	 including	 genetic,	 genetic–	
structural,	 and	 immune	 pathologies,	 the	 syndrome	 of	
MTLE-	HS	 (Table	 7)	 requires	 imaging	 confirmation	 of	
HS—	the	cause	of	the	epilepsy—	for	diagnosis.	This	epi-
lepsy	 syndrome	 is	 often	 drug-	resistant;	 however,	 epi-
lepsy	surgery	may	transform	outcome	to	full	remission	
of	the	epilepsy.

Epidemiology
There	 are	 few	 population-	based	 epidemiological	 stud-
ies	of	MTLE.	Most	studies	derive	from	tertiary	care	(e.g.,	
epilepsy	surgery)	centers	with	referral	bias	toward	drug-	
resistant	patients.	The	prevalence	of	TLE	was	calculated	at	
1.7/1000	people	in	one	population	study.62 The	estimated	
prevalence	 of	 drug-	resistant	 MTLE-	HS	 is	 much	 lower,	
at		.51–	.66	per	1000	persons,	with	an	estimated	incidence	
of	3.1–	3.4	per	100 000	people	per	year.63

Clinical context
Age	at	seizure	onset	is	typically	in	adolescent	and	young	
adult	 years,	 although	 later	 or	 earlier	 onset	 is	 reported.	
There	 is	 no	 sex	 predominance.	 Antecedent,	 birth,	 and	
neonatal	history	is	typically	normal.	Neurological	exami-
nation	is	normal,	although	reduced	facial	movement	may	
be	noted	on	the	contralateral	side.64	A	past	history	of	fe-
brile	 seizures	 in	early	 childhood	may	 be	 found,65–	67	 and	
prolonged	febrile	seizures	in	childhood	may	cause	HS.65,68	
Early	 developmental	 milestones	 are	 within	 normal	 lim-
its.	Cognitive	comorbidity	 is	 recognized,	with	deficits	 in	
verbal	 memory	 associated	 with	 MTLE-	HS	 affecting	 the	
dominant	(usually	left)	mesial	temporal	lobe	and	deficits	
in	visual	memory	associated	with	MTLE-	HS	affecting	the	
nondominant	temporal	lobe.

Course of illness
MTLE-	HS	 is	 often	 drug-	resistant.	 Epilepsy	 surgery,	 in	
selected	etiologies,	may	transform	outcome	from	uncon-
trolled	drug-	resistant	seizures	to	full	remission	of	epilepsy.	
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The	best	surgical	outcome	is	seen	when	the	structural	ab-
normality	is	well	defined	on	imaging.

Seizures
Focal	 aware	 or	 impaired	 awareness	 seizures	 occur	 with	
semiological	 features	 referable	 to	 medial	 temporal	 lobe	
networks.	Focal	aware	seizures	may	be	autonomic	(e.g.,	a	
rising	epigastric	sensation,	abdominal	discomfort,	nausea,	
retching,	 pallor,	 flushing,	 tachycardia),	 cognitive	 (e.g.,	
déjà	vu,	jamais	vu),	emotional	(e.g.,	fear),	or	sensory	(e.g.,	
olfactory,	 gustatory)	 seizures.	 Focal	 aware	 seizures	 may	
be	 the	 only	 initial	 seizure	 type,	 may	 not	 be	 recognized	
as	seizures,	and	may	occur	 for	some	time	before	a	diag-
nosis	of	epilepsy	 is	considered.	In	 focal	 impaired	aware-
ness	seizures,	there	is	usually	behavioral	arrest	and	often	
automatisms	 that	 may	 be	 oral	 (chewing,	 lip-	smacking,	
swallowing),	vocal	(speech,	 in	nondominant	MTLE-	HS),	
or	 gestural.	 Upper	 limb	 automatisms	 may	 be	 unilateral	
and	 may	 lateralize	 the	 seizure	 to	 the	 ipsilateral	 hemi-
sphere.	 Contralateral	 upper	 limb	 dystonia	 may	 develop.	
Contralateral	head	and	eye	version	can	occur,69,70	although	
in	some	patients,	there	may	be	an	initial	ipsilateral	head	
turn	before	the	contralateral	version.71	Speech	may	be	pre-
served	in	seizures	of	nondominant	MTLE-	HS.	Conversely,	
aphasia	 is	 common	 with	 dominant	 MTLE-	HS.	 Seizures	
have	a	gradual	offset,	and	typically	last	1–	5 min,	although	
focal	aware	seizures	can	be	briefer.	After	 focal	 impaired	
awareness	 seizures,	 patients	 may	 experience	 confusion	
lasting	several	minutes.	Seizures	may	progress	to	a	focal	
to	 bilateral	 tonic–	clonic	 seizure,	 and	 there	 may	 be	 con-
tralateral	 (face	 greater	 than	 arm	 and	 leg)	 clonic	 jerking	
and	head	turning	before	the	focal	to	bilateral	tonic–	clonic	
phase.

Focal	 autonomic,	 cognitive,	 emotional,	 and	 sensory	
seizures	can	also	arise	in	other	brain	networks;	however,	
the	onset	symptoms	and	signs	during	seizure	progression	
and	 the	postictal	period	are	different.	The	 following	 ini-
tial	 symptoms	 and	 signs	 suggest	 seizure	 onset	 in	 brain	
networks	other	than	those	in	the	mesial	temporal	region:	
throat	discomfort,	clonic	or	dystonic	movements,	somatic	
sensory	 symptoms,	 hyperkinetic	 activity,	 visual	 symp-
toms,	auditory	symptoms,	and	laughter.

Electroencephalogram
The	EEG	background	is	normal	or	may	show	focal	slow-
ing	 over	 the	 temporal	 region(s).	 Focal	 slowing	 can	 be	
enhanced	 by	 hyperventilation.	 Anterior	 or	 midtemporal	
epileptiform	abnormality	is	characteristic	and	is	often	in-
creased	during	sleep	(Figure	3A).	Temporal	 intermittent	
rhythmic	delta	activity	may	also	be	present.72	Epileptiform	
abnormality	may	occasionally	be	activated	by	hyperven-
tilation.73	 It	 may	 be	 bilateral	 and	 independent,	 or	 bilat-
erally	 synchronous.	 Ictal	 EEG	 (Figure	 3B)	 commonly	

commences	with	focal	electrodecrement	and	low-	voltage	
fast	activity	replacing	the	normal	EEG	background.	This	
evolves	to	rhythmic	frontotemporal	alpha	or	theta,	with	or	
without	superimposed	spikes	or	sharp-	and-	wave.	The	first	
clinical	symptoms	or	signs	may	precede	the	emergence	of	
surface	ictal	rhythm	on	EEG.	Postictal	ipsilateral	slowing	
is	common.

Imaging
HS	is	characterized	by	decreased	hippocampal	volume	(best	
seen	 on	 coronal	 magnetization-	prepared	 rapid	 acquisition	
gradient	echo	or	T1-	weighted	sequences	at	right	angles	to	the	
long	axis	of	the	hippocampus),	with	increased	hippocampal	
signal	intensity	(best	seen	on	coronal	fluid-	attenuated	inver-
sion	recovery	[FLAIR]	and	T2 sequences;	Figure	4).	Up	to	
15%	of	patients	may	have	HS	coexisting	with	another	struc-
tural	 abnormality,	 such	 as	 FCD	 or	 acquired	 pathologies	
("dual	 pathology")74–	76;	 these	 lesions	 should	 therefore	 be	
carefully	sought.	The	occurrence	of	FCD	with	HS	in	ILAE	
classifications	of	FCD	is	categorized	as	FCD	type	IIIa76;	this	
may	be	associated	with	earlier	age	at	seizure	onset	in	child-
hood	and	warrants	extra	care	 in	presurgical	evaluation	 to	
determine	the	primary	lesion	driving	the	epilepsy.

Genetics
MTLE-	HS	is	predominantly	an	acquired	pathology65;	there-
fore,	 genetic	 studies	 are	 not	 often	 indicated.	 Prolonged	
seizures,	 including	 febrile	 seizures,	 can	 cause	 HS;	 there-
fore,	 genetic	 epilepsies	 that	 are	 accompanied	 by	 febrile	
seizures,	especially	 if	prolonged	 (e.g.,	Dravet	 syndrome	or	
genetic	epilepsy	with	febrile	seizures	plus;	genes	SCN1A	or	
SCN1B),	can	predispose	an	 individual	 to	 the	development	
of	MTLE-	HS.	Finding	one	of	these	genes	may	drive	changes	
in	treatment	(e.g.,	considering	the	possibility	of	seizure	ag-
gravation	by	sodium	channel-	blocking	ASMs),	which	may	
improve	seizure	control.	Identification	of	a	genetic	etiology	
is	not	necessarily	a	contraindication	to	epilepsy	surgery	in	
drug-	resistant	patients,	but	may	inform	counseling.77

Differential diagnoses
•	 Viral	 (e.g.,	herpesviruses)	and	autoimmune	limbic	en-

cephalitis	can	present	with	seizures	with	 temporal	 se-
miology,	 but	 subsequently	 patients	 develop	 acute	 or	
subacute	encephalopathy.

•	 MTLE	due	to	causes	other	than	HS:	Examples	include	
FCD	and	genetic	causes	(see	FMTLE).

•	 Extratemporal	 seizures	 that	 propagate	 to	 medial	 tem-
poral	 lobe	 networks,	 especially	 from	 the	 orbitofrontal	
cortex	and	insular–	opercular	region,	but	also	from	the	
occipital	or	parietal	lobes.

•	 Nonepileptic	 seizures	 may	 be	 difficult	 to	 differentiate	
from	MTLE	when	seizures	do	not	progress	to	impaired	
awareness,	or	motor	 features,	as	 the	surface	EEG	may	

 15281167, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/epi.17240, W

iley O
nline L

ibrary on [26/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 1457RINEY et al.

be	normal	during	 focal	aware	seizures,	and	 incidental	
abnormalities	of	the	hippocampus	(such	as	asymmetry	
in	size)	are	not	uncommon.	Adding	to	the	challenge	is	
that	 anxiety	 and	 mood	 disorders	 are	 common	 comor-
bidities	in	patients	with	MTLE.

2.4.2	 |	 Rasmussen	syndrome

RS	(previously	known	as	Rasmussen	encephalitis;	Table	8)		
is	 a	 disorder	 that	 presents	 in	 children,	 adolescents,	 and	

young	adults.	Progressive	hemispheric	atrophy	is	seen	on	
neuroimaging.	The	cause	of	this	is	unknown,	and	no	caus-
ative	antibody	has	been	identified.	Cerebrospinal	fluid	can	
show	normal	findings,	but	may	show	a	mild	pleocytosis,	
mildly	 elevated	 protein,	 and	 oligoclonal	 bands.	 Patients	
have	 focal	 seizures	 (usually	 motor	 seizures,	 including	
epilepsia	partialis	continua),	which	progress	over	time	in	
frequency	and	severity.	A	progressive	contralateral	hemi-
paresis	develops.	The	diagnosis	is	based	on	the	character-
istic	clinical	presentation	and	imaging	findings.78,79	Brain	
biopsy	may	not	be	required,	but	if	performed	shows	mul-
tifocal	 cortical	 inflammation,	 neuronal	 loss,	 and	 gliosis	
confined	to	one	hemisphere.	RS	is	considered	an	etiology-	
specific	epilepsy	syndrome,	because	although	the	cause	of	
the	hemispheric	atrophy	is	unknown,	this	pathology	itself	
is	the	etiology	of	the	electroclinical	syndrome	of	RS.

Epidemiology
RS	 is	 a	 rare	 disease,	 with	 an	 incidence	 of	 1.7–	2.4	 per	
10 million	individuals.80,81

Clinical context
The	age	at	onset	 is	1–	10 years	 (median	=	6 years).	Late	
onset	forms,	starting	in	adolescent	or	adult	life,	comprise	
approximately	 10%	 of	 cases.82	 Both	 sexes	 are	 equally	 af-
fected.	 Antecedent	 and	 birth	 history	 is	 usually	 normal;	
however,	pregnancy	or	perinatal	complications	have	been	
reported	in	19%	of	patients	in	one	surgical	series	operated	
on	between	1945	and	1987.83	At	initial	presentation,	chil-
dren	 are	 typically	 developmentally	 normal.	 Over	 time,	
cognitive	 impairment	 emerges.	 At	 onset,	 neurological	

F I G U R E  3  Electroencephalogram	in	a	53-	year-	old	patient	with	mesial	temporal	lobe	epilepsy	with	hippocampal	sclerosis	(left-	sided	
hippocampal	sclerosis).	(A)	Interictal:	There	is	continuous	polymorphic	slowing	and	a	spike	followed	by	a	slow	wave	at	the	F7	electrode	
(drowsy,	average	reference	montage).	(B)	Ictal:	Seizure	onset	is	depicted	by	the	arrow	(longitudinal	bipolar	montage)

F I G U R E  4  T2-	weighted	imaging	in	a	coronal	plane	at	right	
angles	to	the	long	axis	of	the	hippocampus	showing	increased	
signal	and	loss	of	volume	in	the	left	hippocampus	(arrow)
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examination	is	usually	normal.	Rarely,	children	may	pre-
sent	with	unilateral	limb	dystonia	or	choreoathetosis	prior	
to	seizure	onset.	Over	time,	patients	develop	a	progressive	
hemiparesis,	and	may	develop	hemianopia.	Acquired	lan-
guage	 dysfunction	 is	 seen	 in	 cases	 that	 affect	 the	 domi-
nant	hemisphere.	Progression	of	RS	is	slower	in	patients	
with	adolescent	or	adult	onset	 than	 in	 those	with	child-
hood	onset,	and	final	deficits	may	be	less	severe.82,84

Course of illness
RS	is	associated	with	frequent	drug-	resistant	seizures	and	
progressive	 neurological	 deterioration	 (hemiparesis,	 ho-
monymous	 hemianopia,	 cognitive	 impairment).	 There	
are	typically	three	stages	of	RS:	an	initial	prodromal	phase	

(lasting	 months	 to	 years,	 although	 shorter	 in	 younger	
children),	 with	 infrequent	 seizures	 and	 mild	 hemipa-
resis;	 an	 acute	 phase	 (lasting	 months	 to	 years,	 although	
shorter	 in	 younger	 children),	 with	 increasingly	 frequent	
seizures,	 at	 times	 with	 epilepsia	 partialis	 continua,	 and	
progressive	hemiparesis,	hemianopia,	cognitive,	and	lan-
guage	(the	 latter	 if	dominant	hemisphere)	deterioration;	
and	finally,	a	chronic	phase,	with	permanent	stable	hemi-
paresis	and	other	neurological	disabilities,	and	continued	
seizures	(although	less	frequent	than	in	the	acute	stage).79	
Hemispheric	disconnection	surgery	(so-	called	hemispher-
otomy)	 or	 hemispherectomy	 are	 the	 only	 known	 defini-
tive	treatments	for	seizures	that	can	alter	the	course	of	the	
condition.

T A B L E  8 	 Core	diagnostic	criteria	for	Rasmussen	syndrome

Mandatory Alerta Exclusionary

Seizures Focal/hemispheric	seizures	that	
often	increase	in	frequency	
over	weeks	to	months

Focal	onset	independently	in	both	
hemispheres	(only	2%	of	RS	is	
bilateral)

Generalized	onset	seizures

EEG Hemispheric	slowing	and	
epileptiform	abnormality

Generalized	spike-	and-	wave

Age	at	onset Adolescence	or	adulthood

Development	at	onset Abnormal	development	prior	to	
seizure	onset

Neurological	exam Hemiparesis	present	at	onset	
(if	permanent	hemiparesis	
is	present	immediately	
following	status	epilepticus,	
consider	HHE)

Imaging Progressive	hemiatrophy	(early	
insula	and	head	of	caudate	
atrophy;	see	text)

Lack	of	hyperintense	signal	and/or	
atrophy	of	the	ipsilateral	caudate	
head,	and/or	lack	of	T2/FLAIR	
hyperintense	signal	of	gray	or	white	
matter

Imaging	shows	Sturge–	Weber	
syndrome

Other	studies:	
genetics,	etc.

Metabolic	cause	of	epilepsia	
partialis	continua

Condition	is	due	to	specific	
antibody-	mediated	
encephalitis

Long-	term	outcome Drug-	resistant	epilepsy
Progressive	neurological	deficits

An	MRI	is	required	for	diagnosis.
An	ictal	EEG	is	not	required	for	diagnosis.

Syndrome	in	evolution:	Children	with	drug-	resistant,	focal	hemispheric	seizures	that	progressively	increase	in	frequency,	with	
progressive	neurological	deficits,	but	whose	MRI	remains	normal,	and	where	other	metabolic	and	autoimmune	etiologies	have	been	
excluded,	should	be	highly	suspected	of	having	emerging	RS.

Syndrome	without	laboratory	confirmation:	In	resource-	limited	regions,	RS	can	be	diagnosed	without	EEG	in	a	patient	with	focal/
hemispheric	onset	seizures,	who	shows	the	typical	clinical	evolution,	who	meets	all	other	mandatory	and	no	exclusionary	clinical	
criteria,	and	has	no	alerts.	However,	imaging	(CT	or	MRI)	is	required	to	exclude	other	causes.

Abbreviations:	CT,	computed	tomography;	EEG,	electroencephalogram;	FLAIR,	fluid-	attenuated	inversion	recovery;	HHE,	hemiconvulsion–	hemiplegia–	
epilepsy	syndrome;	MRI,	magnetic	resonance	imaging;	RS,	Rasmussen	syndrome.
aAlert	criteria	are	absent	in	the	vast	majority	of	cases,	but	rarely	can	be	seen.	Their	presence	should	result	in	caution	in	diagnosing	the	syndrome	and	
consideration	of	other	conditions.
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Seizures
Focal	seizures,	usually	motor	seizures,	occur	and	may	be	
clinically	subtle	at	onset.	In	childhood	onset	RS,	seizures	
are	typically	focal	aware	seizures,	whereas	in	older	onset	
patients,	focal	impaired	awareness	seizures	are	more	com-
monly	seen.84 The	clinical	motor	manifestations	are	con-
tralateral	 to	 the	 affected	 hemisphere.	 Seizures	 typically	
increase	in	frequency	over	weeks	to	months	and	can	in-
clude	epilepsia	partialis	continua,	with	ongoing	twitching	
of	one	side	of	the	body,	most	commonly	the	face	and	upper	
extremity.	 Focal	 seizures	 may	 evolve	 to	 bilateral	 tonic–	
clonic	 seizures.	 Focal	 atonic	 seizures	 may	 also	 occur.	
Seizures	may	rapidly	engage	bilateral	brain	networks,	and	
seizures	that	appear	generalized	may	be	seen.

Electroencephalogram
The	background	EEG	may	be	normal	at	initial	presentation,	
but	 usually	 shows	 slowing,	 with	 loss	 of	 normal	 rhythms	
and	sleep	architecture	on	the	affected	side.	With	time,	back-
ground	asymmetry	becomes	more	prominent.	Epileptiform	
abnormality	 is	 typically	 seen	 maximally	 over	 the	 affected	
hemisphere	(Figure	5).	With	time,	it	may	be	seen	in	the	con-
tralateral	hemisphere;	this	does	not	exclude	a	patient	from	
surgical	evaluation.	Epileptiform	abnormality	can	be	facili-
tated	by	sleep.	The	ictal	EEG	shows	focal	 ictal	discharges.	
Seizures	 may	 arise	 from	 several	 foci	 within	 the	 affected	
hemisphere.	Epilepsia	partialis	continua	is	often	not	accom-
panied	by	a	clear	ictal	rhythm	on	scalp	EEG.	With	atrophy	
of	the	affected	hemisphere,	ictal	EEG	may	show	asymmetric	
emphasis	of	the	seizure	on	the	contralateral	side.	However,	
true	 independent	 focal	 seizure	onset	 in	both	hemispheres	
("bilateral"	RS)	has	also	rarely	been	reported	(2%	of	cases).79

Imaging
MRI	is	usually	normal	in	the	early	phase	of	the	disease,	al-
though	RS	occurring	in	patients	with	FCD	or	vascular	ab-
normalities	has	been	reported.85 T2/FLAIR	hyperintensity	
may	 be	 noted	 in	 the	 insular	 region.	 Ipsilateral	 atrophy	 of	
the	caudate	head	is	also	an	early	sign	(Figure	6).	With	time,	
there	 is	 progressive	 atrophy	 of	 the	 affected	 hemisphere	
(Figure	 7),	 often	 starting	 in	 the	 insular	 region,	 with	 en-
largement	of	the	temporal	horn	of	the	lateral	ventricle	and	
Sylvian	fissure.79,86	Atrophy	is	usually	seen	within	the	first	
year	of	onset	and	correlates	with	progressive	hemiparesis.

Genetics
This	disorder	is	not	considered	genetic	in	etiology.

Differential diagnoses
•	 Autoimmune	 encephalitis:	 This	 is	 not	 expected	 to	 be	

limited	 to	 one	 hemisphere,	 and	 cognitive,	 behavioral,	
and	psychiatric	symptoms	and	movement	disorder	typ-
ically	predate	seizures.

•	 Mitochondrial	 disorders:	 Examples	 are	 polymerase	
gamma	 (POLG)-	related	 disorders	 and	 mitochondrial	
encephalomyopathy,	lactic	acidosis,	and	stroke-	like	epi-
sodes	(MELAS).

•	 Hemispheric	 structural	 abnormalities	 (e.g.,	 vascular,	
FCD	 type	 I):	 These	 may	 be	 associated	 with	 seizures,	
hemiparesis,	 and	 hemiatrophy	 on	 MRI;	 however,	 pro-
gressive	 decline	 in	 motor	 and	 cognitive	 function	 over	
time	is	not	expected.

•	 Hemiconvulsion–	hemiplegia–	epilepsy	 syndrome:	 This	
condition	 is	 characterized	 by	 an	 initial	 prolonged	 sei-
zure,	 which	 is	 then	 followed	 immediately	 by	 nonpro-
gressive	hemiparesis.

2.5	 |	 Combined generalized and focal 
epilepsy syndrome with polygenic etiology

2.5.1	 |	 Epilepsy	with	reading-	
induced	seizures

EwRIS	(Table	9)	is	a	rare	combined	generalized	and	focal	
epilepsy	 syndrome,	 characterized	 by	 reflex	 myoclonic	
seizures	affecting	orofacial	muscles	triggered	by	reading.	
If	 reading	 continues,	 these	 may	 worsen,	 and	 a	 general-
ized	tonic–	clonic	seizure	may	occur.	Good	history-	taking	
is	 therefore	critical	 for	diagnosis,	as	 is	awareness	of	 this	
syndrome,	as	the	task-	specific	eliciting	of	symptoms	can	
result	 in	misdiagnosis	of	 seizures	as	PNES,	as	 tics,	or	as	
stuttering.	Seizures	are	elicited	mainly	by	reading,	but	also	
by	other	tasks	related	to	language.	Prognosis	is	favorable,	
as	 spontaneous	 seizures	 are	 not	 expected,	 and	 seizures	
are	responsive	 to	 treatment	and	can	be	avoided	through	
reducing	 exposure	 to	 the	 triggering	 stimulus.	 In	 most	
patients,	 seizures	 require	 long-	term	 treatment,	 although	
some	patients	may	experience	remission	in	time.

WHAT IS	A	REFLEX	SEIZURE?
A	reflex	seizure	is	a	seizure	that	is	consistently	or	
nearly	 consistently	 elicited	 by	 a	 specific	 stimu-
lus,	 which	 may	 be	 sensory,	 sensory–	motor,	 or	
cognitive.	The	stimulus	may	"elementary"	 (e.g.,	
light,	 elimination	 of	 visual	 fixation,	 touch),	
"complex"	(e.g.,	 tooth-	brushing,	eating),	or	cog-
nitive	(e.g.,	reading,	calculating,	thinking,	listen-
ing	to	music).	Such	a	stimulus	will	have	a	high	
likelihood	of	eliciting	a	seizure,	in	contrast	to	a	
stimulus	that	may	facilitate	epileptiform	abnor-
mality	 (such	 as	 photoparoxysmal	 responses	 on	
EEG)	or	evoke	a	seizure,	but	not	consistently.
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Epidemiology
This	is	a	rare	epilepsy	syndrome;	therefore,	true	incidence	
is	unknown.

Clinical context
Age	at	onset	is	typically	in	the	late	teens	(median	=	17.5 years,	
range	=	10–	46 years).87	A	male	sex	predominance	(~2:1)	is	
recognized.87,88	 Antecedent,	 birth,	 and	 neonatal	 history	 is	
typically	normal.	Development	and	cognition	are	typically	
normal.	Neurological	examination	is	normal.

Course of illness
Due	to	the	rarity	of	this	syndrome	(case	reports	only),	lit-
tle	is	known	about	its	course.	Prognosis	is	generally	con-
sidered	 to	 be	 favorable,	 with	 a	 good	 response	 to	 ASMs	
described	 in	 the	 literature,	 and	 potential	 for	 remission	
in	 a	 minority	 of	 patients	 with	 age.88	 Reducing	 exposure	
to	the	triggering	stimulus	may	be	successful	 in	reducing	
seizures;	however,	 limiting	 reading	can	 result	 in	 signifi-
cant	 restrictions	 in	 capacity	 for	 education,	 employment,	
lifestyle,	and	even	for	religious	practice.89

Seizures
Low-	amplitude	 myoclonic	 jerks	 occur,	 mainly	 affect-
ing	 the	masticatory,	oral,	and	perioral	muscles	 (jaw,	 lip,	
tongue).	These	can	cause	a	clicking	sensation,	stuttering,	

F I G U R E  5  A	12-	year-	old	female	with	Rasmussen	syndrome	affecting	the	left	hemisphere,	18 months	after	seizure	onset.	(A)	The	
interictal	electroencephalogram	(referential	montage)	shows	a	low-	voltage	spike	wave	discharge	at	C3	(box	shows	the	spikes	denoted	
by	arrows).	(B)	The	axial	fluid-	attenuated	inversion	recovery	magnetic	resonance	imaging	performed	at	the	same	age	shows	focal	
hyperintensity	and	atrophy	in	the	left	supplementary	motor	area	(square)

ARE EPILEPSIES	WITH	REFLEX	SEIZURES	
EPILEPSY	SYNDROMES?
The	 Task	 Force	 considered	 whether	 conditions	
other	than	EwRIS,	in	which	reflex	seizures	occur,	
might	 be	 epilepsy	 syndromes.	 Although	 patients	
with	 these	 conditions	 have	 in	 common	 a	 specific	
stimulus	triggering	their	seizures,	their	electroclin-
ical	features,	etiologies,	and	prognosis	are	diverse.	
Therefore,	 the	 Task	 Force	 decided	 not	 to	 include	
these	 as	 epilepsy	 syndromes	 at	 the	 current	 time.	
Photosensitivity	is	a	common	feature	of	many	epi-
lepsy	 syndromes,	 and	 the	 Task	 Force	 concluded	
that	 disorders	 associated	 with	 photosensitivity	
were	too	diverse,	when	grouped,	to	satisfy	criteria	
for	an	epilepsy	syndrome.
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or	altered	speech.90	The	reading	time	to	seizure	onset	var-
ies	from	patient	to	patient	and	in	individual	patients.87	If	
the	patient	continues	to	read	after	the	myoclonus	appears,	
the	myoclonus	can	increase	in	severity,	spread	to	trunk	and	
limb	muscles,	and	have	associated	impaired	awareness,	or	

a	 tonic–	clonic	 seizure	 may	 emerge.	 Orofacial	 myoclonic	
jerks	may	be	precipitated	not	only	by	reading,	but	also	by	
other	language-	related	tasks	(language-	induced	seizures)	
in	the	same	patient,	for	example,	by	talking	(when	tense	
or	 argumentative),	 writing,	 or	 by	 making	 complex	 deci-
sions.87,91	 Hand	 myoclonic	 jerks	 are	 seen	 in	 those	 with	
writing	precipitation	of	seizures.	In	an	individual	patient,	
the	 trigger	 may	 be	 specific;	 for	 example,	 seizures	 may	
occur	when	reading	silently	but	not	when	reading	aloud,92	
when	reading	a	specific	language	but	not	mathematics,86	
when	reading	music,	or	when	reading	one	 language	but	
not	 another.89	 A	 minority	 of	 patients	 with	 EwRIS	 have	
been	 described	 to	 have	 co-	occurring	 ocular	 and	 visual	
ictal	manifestations	(e.g.,	blinking,	difficulty	with	ocular	
fixation,	nystagmus,	complex	visual	hallucinations)87,91	or	
rare	spontaneous	myoclonus.87

Electroencephalography
The	 EEG	 background	 is	 normal.	 Interictal	 epileptiform	
abnormality	may	not	be	 seen,	although	 it	may	be	 facili-
tated	 during	 sleep	 or	 on	 awakening.	 Myoclonic	 seizures	
are	accompanied	by	brief	sharp,	spike,	sharp-	and-	wave	or	
spike-	and-	wave	 activity	 (which	 may	 be	 low	 voltage;	 see	
Figure	8).	Approximately	75%	of	cases	show	generalized	
ictal	discharges,	and	approximately	25%	have	bilateral	but	
asymmetric	 or	 unilateral	 discharges	 (lateralizing	 to	 the	
dominant	hemisphere	 in	all;	10%	have	 focal	 temporopa-
rietal	discharges).87 These	may	be	difficult	to	distinguish	
from	 accompanying	 myogenic	 artifact.	 Seizure	 features	
may	be	difficult	to	appreciate	on	video,	due	to	the	subtle	
nature	of	the	orofacial	myoclonus	and	limited	resolution	
of	facial	features	during	video-	EEG.

Imaging
Neuroimaging	is	expected	to	be	normal.	If	there	are	atypi-
cal	features	to	the	clinical	presentation,	imaging	should	be	
considered	to	exclude	a	structural	etiology.

Genetics
A	 positive	 family	 history	 of	 epilepsy,	 usually	 one	 of	 the	
IGE	syndromes	or	a	GGE,	is	found	in	20%–	40%	of	patients	
with	EwRIS.87,91 This	is	considered	to	reflect	a	strong	ge-
netic	contribution.88

Differential diagnoses
•	 Nonepileptic	stuttering:	Nonepileptic	stuttering	is	char-

acterized	 by	 involuntary	 repetitions,	 prolongations	 of	
sounds,	syllables,	words,	or	phrases	as	well	as	involun-
tary	silent	pauses	during	which	the	person	who	stutters	
is	unable	to	produce	sounds.

•	 JME:	In	EwRIS,	the	myoclonus	is	all	or	nearly	all	(i.e.,	
80%–	90%)	 reading	 or	 language-	related,88,93  is	 local-
ized	 to	 the	 jaw,	 and	 does	 not	 predominantly	 occur	 in	

F I G U R E  6  T2-	weighted	axial	image	in	a	patient	with	
Rasmussen	syndrome	showing	atrophy	of	the	caudate	(white	
arrow)	with	subtle	loss	of	volume	of	the	left	insular	region	(blue	
arrow,	evident	as	increased	sulcal	spaces)

F I G U R E  7  T2-	weighted	axial	image	in	the	same	patient	with	
Rasmussen	syndrome	as	for	Figure	6,	showing	increased	atrophy	
of	the	left	hemisphere	with	time	(interval	of	8 years	between	
imagings)
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1462 |   RINEY et al.

the	 morning.87	 In	 JME,	 the	 myoclonus	 occurs	 spon-
taneously	 (although	 cognitive	 induction	 by	 praxis—	
thinking	or	decision-	making—	has	been	 recognized),94	
affects	the	upper	extremities,	is	more	frequently	seen	in	
the	morning,	and	a	photoparoxysmal	response	may	be	
seen	on	EEG.

•	 Focal	seizures	in	occipitotemporal	networks	rarely	can	be	
induced	by	reading,	but	there	is	no	orofacial	myoclonus.95

2.6	 |	 Epilepsy syndromes with 
developmental and/or epileptic 
encephalopathy and epilepsy syndromes 
with progressive neurological 
deterioration

The	term	"DE"	applies	when	there	is	onset	of	a	condition	
manifesting	 with	 cognitive,	 neurological,	 or	 psychiatric	
impairment,	stagnation,	or	regression,	due	directly	to	the	
underlying	 etiology.	 In	 contrast,	 an	 EE	 is	 present	 when	
the	 encephalopathy	 is	 caused	 by	 the	 epileptic	 activity.	
The	 term	 "developmental	and	epileptic	 encephalopathy"	
(DEE)	is	used	when	both	factors	contribute	to	the	patient's	
condition.	The	term	"DE"	can	be	challenging	to	apply	in	
an	 older	 individual	 who	 has	 completed	 all	 development	
normally.	 To	 address	 this,	 the	 Task	 Force	 proposes	 the	
term	 "progressive	 neurological	 deterioration"	 instead	 of	
DE	 for	 such	 patients	 who	 develop	 cognitive,	 neurologi-
cal,	or	psychiatric	impairment	due	directly	to	the	underly-
ing	etiology.	In	this	section	of	the	paper,	we	discuss	PME,	
which,	depending	on	the	etiology	and	age	at	onset,	can	be	

an	epilepsy	syndrome	with	DEE	or	an	epilepsy	syndrome	
with	 progressive	 neurological	 deterioration.	 Depending	
on	age	at	onset,	the	etiology-	specific	epilepsy	syndrome	RS	
(discussed	earlier)	is	also	an	epilepsy	syndrome	with	DEE	
or	with	progressive	neurological	deterioration.	FIRES	can	
begin	at	a	variable	age	but	is	rare	in	adults;	it	is	discussed	
in	a	separate	paper	on	epilepsy	syndromes	that	begin	 in	
childhood.3

2.6.1	 |	 Progressive	myoclonus	epilepsies

The	syndrome	PME	(Table	10)	 is	 rare,	and	 is	 caused	by	
a	heterogenous	group	of	underlying	genetic	etiologies.	It	
is	 recognized	 in	 the	 presence	 of	 (1)	 myoclonus,	 (2)	 pro-
gressive	motor	and	cognitive	impairment,	(3)	sensory	and	
cerebellar	signs,	and	(4)	abnormal	background	slowing	on	
EEG96	that	(5)	appear	in	an	individual	with	prior	normal	
development	 and	 cognition.	 Photosensitivity	 is	 a	 com-
mon	feature	of	many	etiologies	of	PME.	There	may	be	a	
family	 history,	 with	 autosomal	 recessive	 inheritance	 in	
most	cases,	but	PME	can	be	sporadic.	The	prevalence	var-
ies	from	one	region	to	another,	with	higher	prevalence	in	
isolated	regions	or	in	cultures	that	favor	consanguineous	
marriages.	 The	 geographical	 and	 ethnic	 background	 of	
the	patient	is,	therefore,	important	data	for	the	diagnosis	
of	the	underlying	genetic	cause.

The	 following	 entities	 account	 for	 the	 majority	 of	
PME:	Unverricht–	Lundborg	disease	(ULD),	Lafora	dis-
ease,	 neuronal	 ceroid	 lipofuscinosis	 (NCL),	 mitochon-
drial	 disorders	 (myoclonic	 epilepsy	 with	 ragged-	red	

T A B L E  9 	 Core	diagnostic	criteria	for	epilepsy	with	reading-	induced	seizures

Mandatory Alerta Exclusionary

Seizures Reflex	myoclonic	seizures	affecting	
orofacial	muscles	triggered	by	
reading/language-	related	tasks

Prominent	myoclonic	jerks	
affecting	the	upper	limbs

All	other	seizure	types,	except	
generalized	tonic–	clonic	seizures

EEG Background	slowing	on	EEG,	excluding	
in	the	postictal	phase	of	a	generalized	
tonic–	clonic	seizure

Age	at	onset >20 years

Development	at	onset Normal

Neurological	exam Normal

Imaging Normal

An	MRI	is	required	for	diagnosis	to	exclude	a	structural	cause.
An	ictal	EEG	is	not	required;	however,	observation	during	reading	(either	directly	or	by	video)	is	highly	recommended,	as	it	shows	the	

characteristic	myoclonus	affecting	orofacial	muscles.

Syndrome	without	laboratory	confirmation:	In	resource-	limited	regions,	this	syndrome	can	be	diagnosed	in	children	and	adults	who	
meet	all	mandatory	criteria	and	have	no	exclusionary	seizure	types.

Abbreviations:	EEG,	electroencephalogram;	MRI,	magnetic	resonance	imaging.
aAlert	criteria	are	absent	in	the	vast	majority	of	cases,	but	rarely	can	be	seen.	Their	presence	should	result	in	caution	in	diagnosing	the	syndrome	and	
consideration	of	other	conditions.
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fibers,	POLG-	related	disorders,	MELAS),	and	sialidosis.	
Three	 of	 these	 are	 discussed	 further	 in	 this	 paper	 and	
summarized	in	Table	11.	Less	commonly,	the	following	
entities	may	be	identified:	dentatorubral–	pallidoluysian	
atrophy,	juvenile	Huntington	disease,	action	myoclonus–	
renal	failure	syndrome,	juvenile	neuroaxonal	dystrophy,	
pantothenate–	kinase-	associated	 neurodegeneration,	
neuroserpin	inclusion	body	disease,	leukoencephalopa-
thy	with	vanishing	white	matter,	early	onset	Alzheimer	
disease,	GOSR2	pathogenic	variants,	myoclonic	epilepsy	
in	Down	syndrome,	GM2 gangliosidoses,	 tetrahydrobi-
opterin	deficiency,	noninfantile	neuronopathic	Gaucher	
disease,	 Niemann–	Pick	 disease	 type	 C,	 and	 celiac	 dis-
ease.	Genetic	testing	is	required	for	most	of	 these	con-
ditions	to	confirm	the	clinical	diagnosis	and	identify	the	
etiology.	Histological	or	biochemical	testing	can	be	used	
to	support	the	diagnosis	in	specific	circumstances	(e.g.,	
Lafora	 bodies	 in	 sweat	 duct	 cells,	 ragged	 red	 fibers	 in	
biopsied	muscle).

Unverricht– Lundborg disease
Also known as epilepsy with progressive myoclonus 1 or 
Baltic myoclonic epilepsy. This	is	the	most	frequent	cause	
of	 PME	 worldwide	 and	 is	 associated	 with	 a	 less	 severe	
phenotype	than	seen	in	other	PME.97 Most	cases	originate	
from	 the	 Scandinavian	 or	 Baltic	 regions	 of	 Europe,	 or	
Northern	 Africa.	 Prevalence	 may	 be	 as	 high	 as	 1:20  000	
in	Finland.98 The	severity	of	the	condition,	and	therefore	
life	 expectancy,	 vary	 widely.97–	99	 ULD	 begins	 before	
18 years	of	age,	typically	7–	13 years	of	age,99	with	tonic–	
clonic	or	myoclonic	seizures;	absence	seizures	can	occur.	
Myoclonus	may	be	induced	by	tactile	or	photic	stimulation	
and	is	usually	more	pronounced	upon	waking.	It	can	be	
significantly	worsened	by	phenytoin.100	Progression	is	seen	
in	adolescence,	usually	beginning	in	the	first	6 years	after	
seizure	onset,	with	worsening	of	myoclonus,	development	
of	ataxia,	and	mild	cognitive	decline.	The	condition	tends	
to	stabilize	in	early	adulthood,	with	minimal	or	no	further	
cognitive	 decline,	 and	 myoclonus	 and	 ataxia	 may	 even	

F I G U R E  8  A	42-	year-	old	woman	with	epilepsy	with	reading-	induced	seizures	from	18 years	of	age.	Electroencephalogram	shows	(A)	
spikes	with	perioral	bilateral	myoclonia,	followed	by	a	bilateral	spike-	and-	wave;	and	(B)	3–	6-	Hz	generalized	spike-	and-	wave	discharges	
without	a	seizure	(consistent	asymmetry	of	the	spike-	and-	wave	discharges	was	not	seen	throughout	the	EEG	recording)
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T A B L E  1 0 	 Core	diagnostic	criteria	for	progressive	myoclonus	epilepsies

Mandatory Alerta Exclusionary

Seizures Myoclonic	seizures

EEG Generalized	spike/polyspike-	and-	wave Persistent	focal	epileptiform	
abnormality,	other	than	occipital

Age	at	onset 2–	50 years >20 years

Development Normal	at	onset

Neurological	exam Normal	at	onset

Comorbidities Progressive	neurocognitive	deterioration	(in	some	
cases	observation	over	time	is	necessary	to	
distinguish	PME	from	JME)

Imaging Normal	at	onset

Course	of	illness Progressive	worsening	of	myoclonus,	myoclonic	
and	generalized	tonic–	clonic	seizures,	cognitive	
decline,	progressive	cerebellar	signs

EEG	deterioration	with	progressive	background	
slowing	and/or	increased	epileptiform	abnormality

An	MRI	is	not	required	for	diagnosis	but	is	often	done	to	evaluate	for	underlying	etiology.
An	ictal	EEG	is	not	required	for	diagnosis.

Syndrome	without	laboratory	confirmation:	In	resource-	limited	regions,	PME	can	be	suspected	in	persons	who	meet	mandatory	and	no	
exclusionary	criteria,	without	alerts,	and	who	show	a	progressive	worsening	of	myoclonic	seizures	and	neurological	and	cognitive	
function.

Abbreviations:	EEG,	electroencephalogram;	JME,	juvenile	myoclonic	epilepsy;	MRI,	magnetic	resonance	imaging;	PME,	progressive	myoclonus	epilepsies.
aAlert	criteria	are	absent	in	the	vast	majority	of	cases,	but	rarely	can	be	seen.	Their	presence	should	result	in	caution	in	diagnosing	the	syndrome	and	
consideration	of	other	conditions.

T A B L E  1 1 	 Key	characteristics	of	etiologies	of	progressive	myoclonus	epilepsies	discussed	in	this	paper

PME type
Age at 
onset Progression Diagnosis

ULD 7–	13 years Slow	cognitive	and	motor	deterioration	with	
stabilization	in	adulthood

Cystatin	B	(EMP1)	expansion	variations	account	for	
~90%	of	cases	worldwide

LD 6–	19 years Early	rapid	cognitive,	vision,	and	motor	
deterioration;	fatal	approximately	a	decade	
after	onset;	focal	seizures	with	visual	
symptoms	are	an	early	feature

Laforin	(EMP2A)	pathogenic	gene	variant	in	70%,	
malin	(EMP2B)	pathogenic	gene	variant	in	27%,	
no	pathogenic	variant	found	in	3%;	Lafora	bodies	
are	seen	in	sweat	duct	cells	or	other	tissues

CLN2 2–	4 years Initial	speech	delay	and	seizures,	
subsequently	deterioration	in	cognition	
and	motor	skills,	and	then	vision	loss	
emerges	at	4–	6 years	of	age

CLN2/TPP1	pathogenic	gene	variants;	TPP1	
enzyme	activity	is	reduced;	EEG	can	show	
a	photoparoxysmal	response	at	low	(1–	3	
Hz)	frequency;	curvilinear	bodies	profile	of	
lipofuscin	accumulation	in	tissues	(e.g.,	skin)	or	
lymphocytes

CLN3 4–	10 years Rapidly	progressing	vision	loss,	with	macular	
degeneration,	optic	atrophy	±	retinitis	
pigmentosa;	survival:	late	teens−30 years

CLN3	pathogenic	gene	variants;	fingerprint	profile	
of	lipofuscin	accumulation	in	tissue	(e.g.,	skin)	or	
lymphocytes;	lymphocytes	are	vacuolated

Adult	onset	NCL	
(type	A)

11–	50 years Slow	development	of	dementia	and	ataxia;	
visual	impairment	is	not	expected

CLN6	pathogenic	gene	variants	(pathogenic	
variants	in	CTSD,	PPT1,	CLN3,	CLN5,	CTSF,	
and	GRN	also	reported);	mixed	type	inclusions	
(fingerprint,	curvilinear,	rectilinear)	in	tissue	
(e.g.,	skin)	or	lymphocytes

Abbreviations:	TPP1,	tripeptidyl-	peptidase	1;	PME,	progressive	myoclonus	epilepsies;	MRI,	magnetic	resonance	imaging;	ULD,	Unverricht–	Lundborg	disease;	
LD,	Lafora	disease;	CLN,	ceroid	lipofuscinosis;	NCL,	neuronal	ceroid	lipofuscinosis;	EEG,	electroencephalogram.
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improve.	The	EEG	background	may	be	normal	at	onset;	
progressive	 slowing	 of	 the	 background	 usually	 appears	
over	time.	Photic	stimulation	facilitates	spike-	and-	wave	on	
EEG	in	most	cases96;	this	can	be	seen	early	in	the	condition.	
Interictal	generalized	spike-		and	polyspike-	and-	wave	are	
seen	 (Figure	 9).	 EEG	 during	 myoclonic	 seizures	 shows	
generalized	 polyspike-	and-	wave.	 MRI	 is	 usually	 normal	
in	 the	 early	 stages	 of	 the	 condition;	 later,	 mild	 atrophy	
can	be	seen.	A	repeat	expansion	variation	in	the	cystatin	B	
(CSTB,	EMP1)	gene	accounts	for	approximately	90%	of	the	
cases	worldwide;	inheritance	is	autosomal	recessive.	The	
type	of	pathogenic	variant	can	relate	to	severity.99

Lafora disease
Also known as Lafora body disease, progressive myoclonic 
epilepsy 2A and 2B. Lafora	 disease	 is	 more	 prevalent	
in	 Southern	 Europe,	 Northern	 Africa,	 and	 Central	
and	 Southern	 Asia.101  The	 disorder	 is	 usually	 fatal	
approximately	 10  years	 after	 onset;	 however,	 a	 slowly	
progressive	form	has	also	been	described.102 This	subtype	
of	 PME	 begins	 between	 6	 and	 19  years	 of	 age,	 typically	
14–	15  years,	 with	 cognitive	 decline,	 cerebellar	 signs	
(ataxia,	 incoordination),	 vision	 loss,	 and	 myoclonic	 and	
generalized	 tonic–	clonic	 seizures.	 Focal	 seizures	 with	
visual	 symptoms	 (transient	 blindness,	 elemental	 visual	
phenomena,	or	visual	hallucination)	are	characteristically	
an	 early	 manifestation.101  Myoclonic	 seizures	 gradually	
worsen	and	become	intractable,	and	progressive	cognitive	
decline	 continues.	 By	 10  years	 after	 onset,	 affected	
individuals	 have	 nearly	 continuous	 myoclonus	 with	
absence	 seizures,	 frequent	 generalized	 tonic–	clonic	
seizures,	 and	 profound	 dementia	 or	 are	 in	 a	 vegetative	
state.	At	onset,	 the	EEG	has	a	normal	background,	with	
interictal	 spike-	and-	wave	 and	 polyspike	 discharges	 that	
are	activated	by	photic	stimulation	at	low	frequencies.	In	
contrast	 to	 JME,	 generalized	 epileptiform	 abnormality	
is	 not	 activated	 in	 sleep,101	 although	 focal	 epileptiform	
abnormality	in	the	posterior	regions	can	be.103 With	time,	
the	EEG	background	slows,	and	epileptiform	abnormality	
increases	 in	 frequency	 and	 may	 have	 emphasis	 in	
posterior	regions	(Figure	10).	Patients	with	Lafora	disease	
can	develop	erratic	myoclonus	without	EEG	correlate,	a	
further	distinction	from	JME.	MRI	is	usually	normal,	but	
magnetic	 resonance	 spectroscopy	 may	 show	 significant	
reduction	of	the	N-	acetylaspartate/creatine	ratio	in	frontal	
cortex,	 basal	 ganglia,	 and	 cerebellar	 hemispheres.104	
Fluorodeoxyglucose	 positron	 emission	 tomography	 can	
show	 extensive	 areas	 of	 decreased	 glucose	 metabolism,	
the	 severity	 of	 which	 may	 correlate	 with	 stage	 of	
disease.105  Pathogenic	 gene	 variants	 in	 EPM2A	 (laforin)	
and	EPM2B	 (malin)	are	 found	 in	70%	and	27%	of	cases,	
respectively,	 with	 no	 pathogenic	 variant	 found	 in	 3%.106	
Lafora	 bodies	 (accumulation	 of	 glycogen;	 Figure	 11)	

are	seen	 in	sweat	duct	cells	and	 in	other	 tissues.107 This	
condition	 is	differentiated	 from	ULD	by	 the	presence	of	
early	cognitive	decline	and	rapid	progression	of	the	PME.

NCL
Also known as Batten disease, ceroid lipofuscinosis. The	
NCLs	are	a	group	of	neurodegenerative	lysosomal	storage	
disorders,	resulting	in	excess	accumulation	of	lipopigments	
(lipofuscin).	They	were	originally	classified	by	age	at	onset:	
the	infantile	onset	form	("Finnish	form";	not	a	PME),	the	
late	infantile	onset	form,	the	juvenile	onset	form,	and	the	
adult	 onset	 form.	 With	 the	 identification	 of	 causal	 gene	
variants,	however,	the	NCLs	are	now	classified	according	
to	 the	 underlying	 pathogenic	 gene	 and	 age	 at	 onset.	 To	
date,	more	than	a	dozen	genetically	distinct	diseases	are	
recognized.108,109	The	diagnosis	is	based	on	genetic	testing	
and	 (in	 some	 types)	 assays	 of	 enzyme	 activity.	 Electron	
microscopy	 of	 lymphocytes	 or	 tissue	 may	 be	 useful	 for	
nonclassical	presentations.	The	most	prevalent	NCLs	are:	

•	 Ceroid	lipofuscinosis	type	2	(CLN2;	previously	known	
as	NCL	type	2,	the	classic	late	infantile	onset	form	NCL,	
and	 Jansky–	Bielschowsky	 disease).	 This	 is	 the	 most	
prevalent	NCL	and	has	been	reported	in	different	eth-
nic	groups.110,111 New	onset	of	epilepsy	in	a	child	aged	
2–	4 years,	with	a	history	of	early	language	delay,	should	
prompt	consideration	of	CLN2.	Multiple	seizure	 types	
can	occur,	including	febrile,	tonic–	clonic,	absence,	my-
oclonic,	atonic,	and	 focal	 (with	or	without	 focal	 to	bi-
lateral	 tonic–	clonic)	 seizures.	 Myoclonic	 seizures	 may	
not	 be	 present	 at	 onset.	 Delayed	 speech	 development	
is	 often	 recognized	 prior	 to	 onset	 of	 seizures.	 Disease	
progression	 is	 often	 rapid,	 with	 loss	 of	 mobility	 and	
language	 by	 the	 age	 of	 4–	5  years.	 Further	 regression	
occurs,	with	loss	of	vision	occurring	over	the	next	few	
years.	Patients	die	between	the	ages	of	8	and	12 years.	
EEG	may	show	a	photoparoxysmal	response	at	low	fre-
quencies	of	flash	stimulation	(1–	3 Hz;	Figure	12)112;	the	
spike-	and-	waves	are	time-	locked	to	the	photic	stimuli.	
MRI	 shows	 posterior	 white	 matter	 signal	 alteration	
or	 cerebellar	 atrophy.	 Early	 diagnosis	 is	 important	 in	
CLN2	disease,	because	enzyme	replacement	treatment	
is	available,	and	this	can	delay	motor	and	language	de-
cline.113	CLN2	is	caused	by	pathogenic	gene	variants	in	
the	tripeptidyl-	peptidase	1	(TPP1)	CLN2 gene,	resulting	
in	TPP1	enzyme	deficiency	and	subsequent	accumula-
tion	of	lipopigments	(lipofuscin)	in	neurons	and	other	
tissues.	 Variants	 of	 late	 infantile	 onset	 NCL	 may	 also	
be	caused	by	pathogenic	gene	variants	in	CLN1,	CLN5,	
CLN6,	CLN7,	CLN8,	and	CTSD.108,109

•	 CLN3	(previously	known	as	NCL	type	3,	the	classic	ju-
venile	onset	form	NCL,	Batten	disease,	or	Spielmeyer–	
Vogt–	Sjögren	disease).	This	 is	 frequent	 in	Scandinavia	
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(1%	of	Swedes	carry	the	gene),96	but	is	rare	in	other	re-
gions.	This	NCL	is	clinically	similar	to	the	late	infantile	
form,	but	the	age	at	onset	is	later	(4–	10 years),	and	the	
survival	time	longer	(13–	30 years).	Visual	loss	is	rapidly	
progressive,	with	macular	degeneration,	optic	atrophy,	
and	retinitis	pigmentosa.114 This	form	is	due	to	patho-
genic	variants	in	the	CLN3 gene.	The	mutant	CLN3	pro-
tein	retains	residual	function,	explaining	why	this	form	
of	CLN	shows	later	onset	and	less	severe	clinical	mani-
festations	compared	to	other	forms	of	CLN.115 Variants	
of	juvenile	NCL	may	also	be	caused	by	pathogenic	gene	
variants	in	CLN1,	CLN2,	CLN9,	and	ATP13A2.108,109

•	 Adult	onset	NCL.	This	NCL	(previously	known	as	Kufs	
disease)	is	rare	and	appears	as	a	sporadic	condition.	It	
is	present	in	two	forms;	type	A	has	a	PME-	like	presen-
tation	with	later	development	of	dementia	and	ataxia,	
and	type	B	(not	one	of	the	PME)	is	characterized	by	de-
mentia	 with	 cerebellar	 or	 other	 extrapyramidal	 motor	
symptoms.	Visual	 impairment	 is	 not	 expected.	 Age	 at	

onset	is	11–	50 years,	typically	30 years.116 The	prognosis	
is	poor,	with	death	approximately	10 years	after	onset.	
The	storage	material	of	lipopigments	has	different	ultra-
structural	patterns,	with	mixed	combinations	of	"gran-
ular,"	 "curvilinear,"	 and	 "fingerprint"	 profiles	 (Figure	
13).	This	NCL	 is	caused	by	pathogenic	variants	 in	 the	
CLN6  gene.117  Variants	 of	 adult	 onset	 NCL	 may	 also	
be	caused	by	pathogenic	gene	variants	in	CTSD,	CLN1,	
CLN3,	CLN5,	CLN6,	CTSF,	and	GRN.108,109

3 	 | 	 DISCUSSION

Although	not	every	person	with	epilepsy	can	be	character-
ized	as	having	an	epilepsy	syndrome,	identification	of	a	syn-
drome	can	provide	important	guidance	on	investigation	for	
etiology,	management,	and	prognosis.	Syndrome	diagnosis	
relies	 predominantly	 on	 the	 electroclinical	 presentation	

F I G U R E  9  Polygraphic	recording	in	a	16-	year-	old	boy	with	Unverricht–	Lundborg	disease.	(A)	In	the	awake	state,	abundant	fast	
rhythms	(due	to	benzodiazepines)	and	bilateral	spike-	and	sharp-	and-	wave	discharges	are	seen;	on	electromyogram	(EMG),	there	are	bursts	
of	myoclonic	activity	without	a	simultaneous	electroencephalographic	discharge.	(B)	In	stage	2 sleep,	polyspike	discharges	are	seen	with	
an	anterior	predominance	and	without	myoclonic	activity	on	EMG.	L.Ext./R.Ext.,	left/right	arm	extensors;	L.Flex./R.Flex.,	left/right	arm	
flexors;	L.Quadr.Fem.,	left	quadriceps	femoralis;	R.Delt.,	right	deltoid
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with	specific	seizure	types	in	specific	clinical	contexts	and	
specific	interictal	EEG	patterns.	In	the	modern	era,	clinical	
phenotyping	has	been	enhanced	through	the	use	of	home	
video	of	seizures,	allowing	clinicians	access	to	details	of	sei-
zure	semiology,	often	complementing	or	superior	to	video	
obtained	 during	 video-	EEG.118	 Clinicians	 may	 select	 tar-
geted	EEG	investigations	(awake	with	photic	stimulation,	
asleep,	 prolonged,	 overnight,	 or	 with	 simultaneous	 poly-
graphic	recording)	that	assist	with	confirming	the	specific	
epilepsy	 syndrome.	 As	 epilepsy	 syndrome	 identification	
informs	likely	etiology,	the	diagnosis	of	a	syndrome	allows	
clinicians	 to	 initiate	 the	 highest	 yield,	 most	 cost-	effective	
investigations	 to	 obtain	 an	 etiological	 diagnosis,	 limiting	
discomfort	and	risk	to	the	patient.	Investigating	the	individ-
ual's	family	history	(including	clinical,	EEG,	and	imaging	
phenotypes	of	every	affected	member)	 is	essential	 for	 the	

diagnosis	of	several	focal	epilepsy	syndromes	presenting	at	
a	variable	age	and	enhances	the	assessment	of	pathogenic-
ity	 of	 gene	 variants	 identified	 during	 genomic	 investiga-
tion,	which	is	increasingly	utilized	in	the	current	era.

Identifying	 a	 syndrome	 can	 also	 inform	 therapy	 deci-
sions.	Remission	of	the	epilepsy	can	be	expected	in	most	pa-
tients	with	COVE	and	POLE.	A	patient	with	JME	can	have	
aggravation	of	their	epilepsy,	to	mimic	PME,	when	treated	
with	sodium	channel	blockers	(such	as	carbamazepine).1	
Seizures	in	PME	can	be	aggravated	significantly	by	sodium	
channel	blockers	(such	as	phenytoin).100 Although	appar-
ently	a	focal	epilepsy,	patients	with	MTLE-	HS	may	rarely	
have	 aggravation	 of	 their	 epilepsy	 with	 sodium	 channel	
blockers,	if	there	is	a	concomitant	sodium	channelopathy.	
Furthermore,	for	focal	epilepsy	syndromes	(SHE,	FMTLE,	
FFEVF,	EAF,	MTLE-	HS,	and	RS),	epilepsy	surgery	may	be	
effective	if	seizures	do	not	respond	to	ASMs.	This	includes	
when	 there	 is	 an	 underlying	 genetic–	structural	 etiology	
(specifically	 mammalian	 target	 of	 rapamycin	 [mTOR]	
pathway	genes	TSC1,	TSC2,	DEPDC5,	NPRL2,	and	NPRL3),	
but	epilepsy	surgery	has	not	been	associated	with	seizure	
freedom	 in	 Dravet	 syndrome-	associated	 MTLE-	HS.77	 In	
this	 fashion,	both	 the	syndrome	and	etiology	are	 import-
ant	for	tailoring	treatment,	and	counseling	regarding	can-
didacy	for	surgery	and	likely	surgical	outcome.	Although	
recognition	of	autoimmune-	associated	epilepsies119	other	
than	RS	is	important,	as	their	prompt	identification	allows	
earlier	treatment	and	improved	cognitive	outcomes,	the	lit-
erature	on	these	epilepsies	(as	distinct	from	autoimmune	
disorders	 associated	 with	 acute	 symptomatic/acute	 pro-
voked	seizures)	is	still	emerging.	The	authors	acknowledge	
that	 some	 antibody-	specific	 autoimmune-	associated	 epi-
lepsies	may	meet	criteria	 for	an	etiology-	specific	epilepsy	
syndrome	and	that	future	work	will	develop	the	definitions	
of	such	syndromes.

Fortunately,	 the	 epilepsy	 syndromes	 with	 DEE	 and	
epilepsy	 syndromes	 with	 progressive	 neurological	

FIGURE 10 Electroencephalographic	
recording	in	an	adult	female	with	Lafora	
disease	showing	low-amplitude	spikes	
in	the	posterior	regions	(examples	
underlined)

F I G U R E  1 1  Axillary	skin	biopsy	from	a	patient	with	Lafora	
disease.	The	picture	is	taken	of	apocrine	gland	cells	under	light	
microscopy.	Intensely	periodic	acid–	Schiff	positive	material	(Lafora	
bodies)	is	observed	scattered	in	the	cytoplasm	of	several	cells	
(circles)
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deterioration	presenting	at	a	variable	age	are	rare,	specif-
ically	FIRES,	RS	and	PME.	In	these	syndromes,	cognitive	
and	 neurological	 impairment	 are	 nearly	 always	 eventu-
ally	present.	Therapeutic	options	are	limited	for	these	syn-
dromes;	 for	 example,	 hemispheric	 disconnection	 in	 RS,	
although	 it	 resolves	 the	epilepsy,	 results	 in	a	permanent	
hemispheric	neurological	deficit.	Therapeutic	options	are	
limited	for	many	PMEs,	although	recently	enzyme	replace-
ment	therapy	has	become	available	for	CLN2.113 There	is	
a	great	need	for	better	 therapies	 for	 these	disorders,	and	
their	identification	is	essential	to	facilitate	patients	being	
included	in	clinical	trials.

The	definitions	of	epilepsy	syndromes	provided	in	this	
paper	will	 require	validation	 in	 longitudinal	 studies	and	
may	be	further	refined	as	new	data	are	published	over	time.	
Historically,	 epilepsy	 syndromes	 evolved	 from	 patients	
(and	families)	being	grouped	into	empirically	delineated	
electroclinical	presentations,	and	 then	research	reported	
data	from	those	cohorts,	describing	their	phenotype	(clin-
ical,	 EEG,	 imaging)	 and	 associated	 etiologies.	 This	 past	
approach	 has	 strongly	 influenced	 early	 characterization	
of	epilepsy	syndromes.	As	 time	passed,	and	with	contri-
butions	 from	 genetic	 research,	 the	 phenotypic	 spectrum	
for	 some	 syndromes	 has	 expanded	 and	 etiology-	specific	
epilepsy	syndromes	are	increasingly	being	characterized.	

This	 is	 likely	 to	 continue,	 and	 etiology-	specific	 epilepsy	
syndromes	will	become	increasingly	important.	Strict	de-
lineation	 of	 epilepsy	 syndromes	 can	 be	 harmful	 if	 they	
exclude	patients	who	do	not	precisely	meet	a	syndrome's	
criteria	 from	 having	 appropriate	 investigation	 and	 treat-
ment	 for	 the	 syndrome	 (and	 related	 etiology)	 that	 they	
approximate	but	do	not	strictly	meet.	Syndromes	should,	

F I G U R E  1 2  Electroencephalogram	showing	slow	photoparoxysmal	response	to	1-	Hz	photic	stimulation	(applied	at	the	time	of	the	
arrows	in	the	image)	in	a	child	3	years	9	months	old	with	ceroid	lipofuscinosis	type	2	disease

F I G U R E  1 3  Typical	"fingerprint"	inclusion	bodies	(arrows)	in	
a	patient	with	adult	onset	neuronal	ceroid	lipofuscinosis,	seen	on	
electron	microscopy	of	a	skin	biopsy
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therefore,	 be	 revised	 in	 the	 future	 to	 reflect	 expanded	
phenotypes,	or	alternatively	more	restricted	phenotypes,	
when	 these	 are	 recognized	 as	 relevant,	 and	 to	 include	
newly	 identified	 etiologies,	 when	 these	 are	 discovered.	
This	may	have	importance	when	specific	family	planning,	
preventative,	or	mitigating	interventions	are	available	for	
the	 etiology	 and/or	 its	 neurodevelopmental	 and	 cogni-
tive	sequelae—	for	example,	emerging	antiepileptogenesis	
strategies	 before	 onset	 of	 seizures	 in	 specific	 mTORop-
athies.120	 Looking	 to	 the	 future,	 with	 ongoing	 research	
improving	 delineation	 of	 structural	 brain	 abnormalities,	
immune-	mediated	pathologies,	and	pathogenic	gene	vari-
ants,	 it	 is	 likely	 that	more	etiology-	specific	epilepsy	syn-
dromes	 will	 emerge.	 However,	 epilepsy	 syndromes	 will	
continue	to	have	relevance,	as	the	phenotypes	associated	
with	some	etiologies	may	not	be	specific	(e.g.,	DEPDC5),	
and	 syndrome	 identification	 will	 remain	 important	 for	
targeting	investigation	toward	a	group	of	potential	etiolo-
gies,	guiding	treatment,	and	prognosis	counseling.	Future	
work	establishing	diagnostic	criteria	 for	etiology-	specific	
epilepsy	 syndromes	 will	 be	 important	 for	 research	 into	
precision	therapies	(e.g.,	mTOR	inhibitors	for	mTORopa-
thies:	TSC1,	TSC2,	DEPDC5,	NPRL2,	NPRL3),	advancing	
knowledge	of	pathogenesis	and	for	identifying	subgroups	
within	specific	etiologies	that	have	a	better	treatment	re-
sponse.	It	is	anticipated	that	this	will	be	the	role	of	future	
Task	Forces	of	the	ILAE.
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